Metamath Proof Explorer


Theorem ioof

Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Assertion ioof . : * × * 𝒫

Proof

Step Hyp Ref Expression
1 iooval x * y * x y = z * | x < z z < y
2 ioossre x y
3 ovex x y V
4 3 elpw x y 𝒫 x y
5 2 4 mpbir x y 𝒫
6 1 5 eqeltrrdi x * y * z * | x < z z < y 𝒫
7 6 rgen2 x * y * z * | x < z z < y 𝒫
8 df-ioo . = x * , y * z * | x < z z < y
9 8 fmpo x * y * z * | x < z z < y 𝒫 . : * × * 𝒫
10 7 9 mpbi . : * × * 𝒫