Metamath Proof Explorer


Theorem ioogtlbd

Description: An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses ioogtlbd.1 φ A *
ioogtlbd.2 φ B *
ioogtlbd.3 φ C A B
Assertion ioogtlbd φ A < C

Proof

Step Hyp Ref Expression
1 ioogtlbd.1 φ A *
2 ioogtlbd.2 φ B *
3 ioogtlbd.3 φ C A B
4 ioogtlb A * B * C A B A < C
5 1 2 3 4 syl3anc φ A < C