Metamath Proof Explorer


Theorem iooin

Description: Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion iooin A * B * C * D * A B C D = if A C C A if B D B D

Proof

Step Hyp Ref Expression
1 df-ioo . = x * , y * z * | x < z z < y
2 xrmaxlt A * C * z * if A C C A < z A < z C < z
3 xrltmin z * B * D * z < if B D B D z < B z < D
4 1 2 3 ixxin A * B * C * D * A B C D = if A C C A if B D B D