Metamath Proof Explorer


Theorem iooinlbub

Description: An open interval has empty intersection with its bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion iooinlbub A B A B =

Proof

Step Hyp Ref Expression
1 disjr A B A B = x A B ¬ x A B
2 elpri x A B x = A x = B
3 lbioo ¬ A A B
4 eleq1 x = A x A B A A B
5 3 4 mtbiri x = A ¬ x A B
6 ubioo ¬ B A B
7 eleq1 x = B x A B B A B
8 6 7 mtbiri x = B ¬ x A B
9 5 8 jaoi x = A x = B ¬ x A B
10 2 9 syl x A B ¬ x A B
11 1 10 mprgbir A B A B =