Metamath Proof Explorer


Theorem ioojoin

Description: Join two open intervals to create a third. (Contributed by NM, 11-Aug-2008) (Proof shortened by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion ioojoin A * B * C * A < B B < C A B B B C = A C

Proof

Step Hyp Ref Expression
1 unass A B B B C = A B B B C
2 snunioo B * C * B < C B B C = B C
3 2 3expa B * C * B < C B B C = B C
4 3 3adantl1 A * B * C * B < C B B C = B C
5 4 adantrl A * B * C * A < B B < C B B C = B C
6 5 uneq2d A * B * C * A < B B < C A B B B C = A B B C
7 df-ioo . = x * , y * z * | x < z z < y
8 df-ico . = x * , y * z * | x z z < y
9 xrlenlt B * w * B w ¬ w < B
10 xrlttr w * B * C * w < B B < C w < C
11 xrltletr A * B * w * A < B B w A < w
12 7 8 9 7 10 11 ixxun A * B * C * A < B B < C A B B C = A C
13 6 12 eqtrd A * B * C * A < B B < C A B B B C = A C
14 1 13 eqtrid A * B * C * A < B B < C A B B B C = A C