Metamath Proof Explorer


Theorem iooltubd

Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iooltubd.1 φ A *
iooltubd.2 φ B *
iooltubd.3 φ C A B
Assertion iooltubd φ C < B

Proof

Step Hyp Ref Expression
1 iooltubd.1 φ A *
2 iooltubd.2 φ B *
3 iooltubd.3 φ C A B
4 iooltub A * B * C A B C < B
5 1 2 3 4 syl3anc φ C < B