Metamath Proof Explorer
Description: An element of an open interval is less than its upper bound.
(Contributed by Glauco Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Hypotheses |
iooltubd.1 |
|
|
|
iooltubd.2 |
|
|
|
iooltubd.3 |
|
|
Assertion |
iooltubd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
iooltubd.1 |
|
2 |
|
iooltubd.2 |
|
3 |
|
iooltubd.3 |
|
4 |
|
iooltub |
|
5 |
1 2 3 4
|
syl3anc |
|