Database
REAL AND COMPLEX NUMBERS
Order sets
Real number intervals
ioomax
Next ⟩
iccmax
Metamath Proof Explorer
Ascii
Unicode
Theorem
ioomax
Description:
The open interval from minus to plus infinity.
(Contributed by
NM
, 6-Feb-2007)
Ref
Expression
Assertion
ioomax
⊢
−∞
+∞
=
ℝ
Proof
Step
Hyp
Ref
Expression
1
mnfxr
⊢
−∞
∈
ℝ
*
2
pnfxr
⊢
+∞
∈
ℝ
*
3
iooval2
⊢
−∞
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
−∞
+∞
=
x
∈
ℝ
|
−∞
<
x
∧
x
<
+∞
4
1
2
3
mp2an
⊢
−∞
+∞
=
x
∈
ℝ
|
−∞
<
x
∧
x
<
+∞
5
rabid2
⊢
ℝ
=
x
∈
ℝ
|
−∞
<
x
∧
x
<
+∞
↔
∀
x
∈
ℝ
−∞
<
x
∧
x
<
+∞
6
mnflt
⊢
x
∈
ℝ
→
−∞
<
x
7
ltpnf
⊢
x
∈
ℝ
→
x
<
+∞
8
6
7
jca
⊢
x
∈
ℝ
→
−∞
<
x
∧
x
<
+∞
9
5
8
mprgbir
⊢
ℝ
=
x
∈
ℝ
|
−∞
<
x
∧
x
<
+∞
10
4
9
eqtr4i
⊢
−∞
+∞
=
ℝ