Metamath Proof Explorer


Theorem ioombl1

Description: An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014) (Proof shortened by Mario Carneiro, 25-Mar-2015)

Ref Expression
Assertion ioombl1 A * A +∞ dom vol

Proof

Step Hyp Ref Expression
1 elxr A * A A = +∞ A = −∞
2 ioossre A +∞
3 2 a1i A A +∞
4 elpwi x 𝒫 x
5 simplrl A x vol * x y + x
6 simplrr A x vol * x y + vol * x
7 simpr A x vol * x y + y +
8 eqid seq 1 + abs f = seq 1 + abs f
9 8 ovolgelb x vol * x y + f 2 x ran . f sup ran seq 1 + abs f * < vol * x + y
10 5 6 7 9 syl3anc A x vol * x y + f 2 x ran . f sup ran seq 1 + abs f * < vol * x + y
11 eqid A +∞ = A +∞
12 simplll A x vol * x y + f 2 x ran . f sup ran seq 1 + abs f * < vol * x + y A
13 5 adantr A x vol * x y + f 2 x ran . f sup ran seq 1 + abs f * < vol * x + y x
14 6 adantr A x vol * x y + f 2 x ran . f sup ran seq 1 + abs f * < vol * x + y vol * x
15 simplr A x vol * x y + f 2 x ran . f sup ran seq 1 + abs f * < vol * x + y y +
16 eqid seq 1 + abs m if if 1 st f m A A 1 st f m 2 nd f m if 1 st f m A A 1 st f m 2 nd f m 2 nd f m = seq 1 + abs m if if 1 st f m A A 1 st f m 2 nd f m if 1 st f m A A 1 st f m 2 nd f m 2 nd f m
17 eqid seq 1 + abs m 1 st f m if if 1 st f m A A 1 st f m 2 nd f m if 1 st f m A A 1 st f m 2 nd f m = seq 1 + abs m 1 st f m if if 1 st f m A A 1 st f m 2 nd f m if 1 st f m A A 1 st f m 2 nd f m
18 simprl A x vol * x y + f 2 x ran . f sup ran seq 1 + abs f * < vol * x + y f 2
19 elovolmlem f 2 f : 2
20 18 19 sylib A x vol * x y + f 2 x ran . f sup ran seq 1 + abs f * < vol * x + y f : 2
21 simprrl A x vol * x y + f 2 x ran . f sup ran seq 1 + abs f * < vol * x + y x ran . f
22 simprrr A x vol * x y + f 2 x ran . f sup ran seq 1 + abs f * < vol * x + y sup ran seq 1 + abs f * < vol * x + y
23 eqid 1 st f n = 1 st f n
24 eqid 2 nd f n = 2 nd f n
25 2fveq3 m = n 1 st f m = 1 st f n
26 25 breq1d m = n 1 st f m A 1 st f n A
27 26 25 ifbieq2d m = n if 1 st f m A A 1 st f m = if 1 st f n A A 1 st f n
28 2fveq3 m = n 2 nd f m = 2 nd f n
29 27 28 breq12d m = n if 1 st f m A A 1 st f m 2 nd f m if 1 st f n A A 1 st f n 2 nd f n
30 29 27 28 ifbieq12d m = n if if 1 st f m A A 1 st f m 2 nd f m if 1 st f m A A 1 st f m 2 nd f m = if if 1 st f n A A 1 st f n 2 nd f n if 1 st f n A A 1 st f n 2 nd f n
31 30 28 opeq12d m = n if if 1 st f m A A 1 st f m 2 nd f m if 1 st f m A A 1 st f m 2 nd f m 2 nd f m = if if 1 st f n A A 1 st f n 2 nd f n if 1 st f n A A 1 st f n 2 nd f n 2 nd f n
32 31 cbvmptv m if if 1 st f m A A 1 st f m 2 nd f m if 1 st f m A A 1 st f m 2 nd f m 2 nd f m = n if if 1 st f n A A 1 st f n 2 nd f n if 1 st f n A A 1 st f n 2 nd f n 2 nd f n
33 25 30 opeq12d m = n 1 st f m if if 1 st f m A A 1 st f m 2 nd f m if 1 st f m A A 1 st f m 2 nd f m = 1 st f n if if 1 st f n A A 1 st f n 2 nd f n if 1 st f n A A 1 st f n 2 nd f n
34 33 cbvmptv m 1 st f m if if 1 st f m A A 1 st f m 2 nd f m if 1 st f m A A 1 st f m 2 nd f m = n 1 st f n if if 1 st f n A A 1 st f n 2 nd f n if 1 st f n A A 1 st f n 2 nd f n
35 11 12 13 14 15 8 16 17 20 21 22 23 24 32 34 ioombl1lem4 A x vol * x y + f 2 x ran . f sup ran seq 1 + abs f * < vol * x + y vol * x A +∞ + vol * x A +∞ vol * x + y
36 10 35 rexlimddv A x vol * x y + vol * x A +∞ + vol * x A +∞ vol * x + y
37 36 ralrimiva A x vol * x y + vol * x A +∞ + vol * x A +∞ vol * x + y
38 inss1 x A +∞ x
39 ovolsscl x A +∞ x x vol * x vol * x A +∞
40 38 39 mp3an1 x vol * x vol * x A +∞
41 40 adantl A x vol * x vol * x A +∞
42 difss x A +∞ x
43 ovolsscl x A +∞ x x vol * x vol * x A +∞
44 42 43 mp3an1 x vol * x vol * x A +∞
45 44 adantl A x vol * x vol * x A +∞
46 41 45 readdcld A x vol * x vol * x A +∞ + vol * x A +∞
47 simprr A x vol * x vol * x
48 alrple vol * x A +∞ + vol * x A +∞ vol * x vol * x A +∞ + vol * x A +∞ vol * x y + vol * x A +∞ + vol * x A +∞ vol * x + y
49 46 47 48 syl2anc A x vol * x vol * x A +∞ + vol * x A +∞ vol * x y + vol * x A +∞ + vol * x A +∞ vol * x + y
50 37 49 mpbird A x vol * x vol * x A +∞ + vol * x A +∞ vol * x
51 50 expr A x vol * x vol * x A +∞ + vol * x A +∞ vol * x
52 4 51 sylan2 A x 𝒫 vol * x vol * x A +∞ + vol * x A +∞ vol * x
53 52 ralrimiva A x 𝒫 vol * x vol * x A +∞ + vol * x A +∞ vol * x
54 ismbl2 A +∞ dom vol A +∞ x 𝒫 vol * x vol * x A +∞ + vol * x A +∞ vol * x
55 3 53 54 sylanbrc A A +∞ dom vol
56 oveq1 A = +∞ A +∞ = +∞ +∞
57 iooid +∞ +∞ =
58 56 57 eqtrdi A = +∞ A +∞ =
59 0mbl dom vol
60 58 59 eqeltrdi A = +∞ A +∞ dom vol
61 oveq1 A = −∞ A +∞ = −∞ +∞
62 ioomax −∞ +∞ =
63 61 62 eqtrdi A = −∞ A +∞ =
64 rembl dom vol
65 63 64 eqeltrdi A = −∞ A +∞ dom vol
66 55 60 65 3jaoi A A = +∞ A = −∞ A +∞ dom vol
67 1 66 sylbi A * A +∞ dom vol