Metamath Proof Explorer


Theorem ioombl1lem1

Description: Lemma for ioombl1 . (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses ioombl1.b B = A +∞
ioombl1.a φ A
ioombl1.e φ E
ioombl1.v φ vol * E
ioombl1.c φ C +
ioombl1.s S = seq 1 + abs F
ioombl1.t T = seq 1 + abs G
ioombl1.u U = seq 1 + abs H
ioombl1.f1 φ F : 2
ioombl1.f2 φ E ran . F
ioombl1.f3 φ sup ran S * < vol * E + C
ioombl1.p P = 1 st F n
ioombl1.q Q = 2 nd F n
ioombl1.g G = n if if P A A P Q if P A A P Q Q
ioombl1.h H = n P if if P A A P Q if P A A P Q
Assertion ioombl1lem1 φ G : 2 H : 2

Proof

Step Hyp Ref Expression
1 ioombl1.b B = A +∞
2 ioombl1.a φ A
3 ioombl1.e φ E
4 ioombl1.v φ vol * E
5 ioombl1.c φ C +
6 ioombl1.s S = seq 1 + abs F
7 ioombl1.t T = seq 1 + abs G
8 ioombl1.u U = seq 1 + abs H
9 ioombl1.f1 φ F : 2
10 ioombl1.f2 φ E ran . F
11 ioombl1.f3 φ sup ran S * < vol * E + C
12 ioombl1.p P = 1 st F n
13 ioombl1.q Q = 2 nd F n
14 ioombl1.g G = n if if P A A P Q if P A A P Q Q
15 ioombl1.h H = n P if if P A A P Q if P A A P Q
16 2 adantr φ n A
17 ovolfcl F : 2 n 1 st F n 2 nd F n 1 st F n 2 nd F n
18 9 17 sylan φ n 1 st F n 2 nd F n 1 st F n 2 nd F n
19 18 simp1d φ n 1 st F n
20 12 19 eqeltrid φ n P
21 16 20 ifcld φ n if P A A P
22 18 simp2d φ n 2 nd F n
23 13 22 eqeltrid φ n Q
24 min2 if P A A P Q if if P A A P Q if P A A P Q Q
25 21 23 24 syl2anc φ n if if P A A P Q if P A A P Q Q
26 df-br if if P A A P Q if P A A P Q Q if if P A A P Q if P A A P Q Q
27 25 26 sylib φ n if if P A A P Q if P A A P Q Q
28 21 23 ifcld φ n if if P A A P Q if P A A P Q
29 28 23 opelxpd φ n if if P A A P Q if P A A P Q Q 2
30 27 29 elind φ n if if P A A P Q if P A A P Q Q 2
31 30 14 fmptd φ G : 2
32 max1 P A P if P A A P
33 20 16 32 syl2anc φ n P if P A A P
34 18 simp3d φ n 1 st F n 2 nd F n
35 34 12 13 3brtr4g φ n P Q
36 breq2 if P A A P = if if P A A P Q if P A A P Q P if P A A P P if if P A A P Q if P A A P Q
37 breq2 Q = if if P A A P Q if P A A P Q P Q P if if P A A P Q if P A A P Q
38 36 37 ifboth P if P A A P P Q P if if P A A P Q if P A A P Q
39 33 35 38 syl2anc φ n P if if P A A P Q if P A A P Q
40 df-br P if if P A A P Q if P A A P Q P if if P A A P Q if P A A P Q
41 39 40 sylib φ n P if if P A A P Q if P A A P Q
42 20 28 opelxpd φ n P if if P A A P Q if P A A P Q 2
43 41 42 elind φ n P if if P A A P Q if P A A P Q 2
44 43 15 fmptd φ H : 2
45 31 44 jca φ G : 2 H : 2