Metamath Proof Explorer


Theorem ioombl1lem2

Description: Lemma for ioombl1 . (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses ioombl1.b B = A +∞
ioombl1.a φ A
ioombl1.e φ E
ioombl1.v φ vol * E
ioombl1.c φ C +
ioombl1.s S = seq 1 + abs F
ioombl1.t T = seq 1 + abs G
ioombl1.u U = seq 1 + abs H
ioombl1.f1 φ F : 2
ioombl1.f2 φ E ran . F
ioombl1.f3 φ sup ran S * < vol * E + C
ioombl1.p P = 1 st F n
ioombl1.q Q = 2 nd F n
ioombl1.g G = n if if P A A P Q if P A A P Q Q
ioombl1.h H = n P if if P A A P Q if P A A P Q
Assertion ioombl1lem2 φ sup ran S * <

Proof

Step Hyp Ref Expression
1 ioombl1.b B = A +∞
2 ioombl1.a φ A
3 ioombl1.e φ E
4 ioombl1.v φ vol * E
5 ioombl1.c φ C +
6 ioombl1.s S = seq 1 + abs F
7 ioombl1.t T = seq 1 + abs G
8 ioombl1.u U = seq 1 + abs H
9 ioombl1.f1 φ F : 2
10 ioombl1.f2 φ E ran . F
11 ioombl1.f3 φ sup ran S * < vol * E + C
12 ioombl1.p P = 1 st F n
13 ioombl1.q Q = 2 nd F n
14 ioombl1.g G = n if if P A A P Q if P A A P Q Q
15 ioombl1.h H = n P if if P A A P Q if P A A P Q
16 eqid abs F = abs F
17 16 6 ovolsf F : 2 S : 0 +∞
18 9 17 syl φ S : 0 +∞
19 18 frnd φ ran S 0 +∞
20 icossxr 0 +∞ *
21 19 20 sstrdi φ ran S *
22 supxrcl ran S * sup ran S * < *
23 21 22 syl φ sup ran S * < *
24 5 rpred φ C
25 4 24 readdcld φ vol * E + C
26 mnfxr −∞ *
27 26 a1i φ −∞ *
28 18 ffnd φ S Fn
29 1nn 1
30 fnfvelrn S Fn 1 S 1 ran S
31 28 29 30 sylancl φ S 1 ran S
32 21 31 sseldd φ S 1 *
33 rge0ssre 0 +∞
34 ffvelrn S : 0 +∞ 1 S 1 0 +∞
35 18 29 34 sylancl φ S 1 0 +∞
36 33 35 sselid φ S 1
37 36 mnfltd φ −∞ < S 1
38 supxrub ran S * S 1 ran S S 1 sup ran S * <
39 21 31 38 syl2anc φ S 1 sup ran S * <
40 27 32 23 37 39 xrltletrd φ −∞ < sup ran S * <
41 xrre sup ran S * < * vol * E + C −∞ < sup ran S * < sup ran S * < vol * E + C sup ran S * <
42 23 25 40 11 41 syl22anc φ sup ran S * <