Metamath Proof Explorer


Theorem ioombl1lem3

Description: Lemma for ioombl1 . (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses ioombl1.b B = A +∞
ioombl1.a φ A
ioombl1.e φ E
ioombl1.v φ vol * E
ioombl1.c φ C +
ioombl1.s S = seq 1 + abs F
ioombl1.t T = seq 1 + abs G
ioombl1.u U = seq 1 + abs H
ioombl1.f1 φ F : 2
ioombl1.f2 φ E ran . F
ioombl1.f3 φ sup ran S * < vol * E + C
ioombl1.p P = 1 st F n
ioombl1.q Q = 2 nd F n
ioombl1.g G = n if if P A A P Q if P A A P Q Q
ioombl1.h H = n P if if P A A P Q if P A A P Q
Assertion ioombl1lem3 φ n abs G n + abs H n = abs F n

Proof

Step Hyp Ref Expression
1 ioombl1.b B = A +∞
2 ioombl1.a φ A
3 ioombl1.e φ E
4 ioombl1.v φ vol * E
5 ioombl1.c φ C +
6 ioombl1.s S = seq 1 + abs F
7 ioombl1.t T = seq 1 + abs G
8 ioombl1.u U = seq 1 + abs H
9 ioombl1.f1 φ F : 2
10 ioombl1.f2 φ E ran . F
11 ioombl1.f3 φ sup ran S * < vol * E + C
12 ioombl1.p P = 1 st F n
13 ioombl1.q Q = 2 nd F n
14 ioombl1.g G = n if if P A A P Q if P A A P Q Q
15 ioombl1.h H = n P if if P A A P Q if P A A P Q
16 ovolfcl F : 2 n 1 st F n 2 nd F n 1 st F n 2 nd F n
17 9 16 sylan φ n 1 st F n 2 nd F n 1 st F n 2 nd F n
18 17 simp2d φ n 2 nd F n
19 13 18 eqeltrid φ n Q
20 19 recnd φ n Q
21 2 adantr φ n A
22 17 simp1d φ n 1 st F n
23 12 22 eqeltrid φ n P
24 21 23 ifcld φ n if P A A P
25 24 19 ifcld φ n if if P A A P Q if P A A P Q
26 25 recnd φ n if if P A A P Q if P A A P Q
27 23 recnd φ n P
28 20 26 27 npncand φ n Q if if P A A P Q if P A A P Q + if if P A A P Q if P A A P Q - P = Q P
29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ioombl1lem1 φ G : 2 H : 2
30 29 simpld φ G : 2
31 eqid abs G = abs G
32 31 ovolfsval G : 2 n abs G n = 2 nd G n 1 st G n
33 30 32 sylan φ n abs G n = 2 nd G n 1 st G n
34 simpr φ n n
35 opex if if P A A P Q if P A A P Q Q V
36 14 fvmpt2 n if if P A A P Q if P A A P Q Q V G n = if if P A A P Q if P A A P Q Q
37 34 35 36 sylancl φ n G n = if if P A A P Q if P A A P Q Q
38 37 fveq2d φ n 2 nd G n = 2 nd if if P A A P Q if P A A P Q Q
39 op2ndg if if P A A P Q if P A A P Q Q 2 nd if if P A A P Q if P A A P Q Q = Q
40 25 19 39 syl2anc φ n 2 nd if if P A A P Q if P A A P Q Q = Q
41 38 40 eqtrd φ n 2 nd G n = Q
42 37 fveq2d φ n 1 st G n = 1 st if if P A A P Q if P A A P Q Q
43 op1stg if if P A A P Q if P A A P Q Q 1 st if if P A A P Q if P A A P Q Q = if if P A A P Q if P A A P Q
44 25 19 43 syl2anc φ n 1 st if if P A A P Q if P A A P Q Q = if if P A A P Q if P A A P Q
45 42 44 eqtrd φ n 1 st G n = if if P A A P Q if P A A P Q
46 41 45 oveq12d φ n 2 nd G n 1 st G n = Q if if P A A P Q if P A A P Q
47 33 46 eqtrd φ n abs G n = Q if if P A A P Q if P A A P Q
48 29 simprd φ H : 2
49 eqid abs H = abs H
50 49 ovolfsval H : 2 n abs H n = 2 nd H n 1 st H n
51 48 50 sylan φ n abs H n = 2 nd H n 1 st H n
52 opex P if if P A A P Q if P A A P Q V
53 15 fvmpt2 n P if if P A A P Q if P A A P Q V H n = P if if P A A P Q if P A A P Q
54 34 52 53 sylancl φ n H n = P if if P A A P Q if P A A P Q
55 54 fveq2d φ n 2 nd H n = 2 nd P if if P A A P Q if P A A P Q
56 op2ndg P if if P A A P Q if P A A P Q 2 nd P if if P A A P Q if P A A P Q = if if P A A P Q if P A A P Q
57 23 25 56 syl2anc φ n 2 nd P if if P A A P Q if P A A P Q = if if P A A P Q if P A A P Q
58 55 57 eqtrd φ n 2 nd H n = if if P A A P Q if P A A P Q
59 54 fveq2d φ n 1 st H n = 1 st P if if P A A P Q if P A A P Q
60 op1stg P if if P A A P Q if P A A P Q 1 st P if if P A A P Q if P A A P Q = P
61 23 25 60 syl2anc φ n 1 st P if if P A A P Q if P A A P Q = P
62 59 61 eqtrd φ n 1 st H n = P
63 58 62 oveq12d φ n 2 nd H n 1 st H n = if if P A A P Q if P A A P Q P
64 51 63 eqtrd φ n abs H n = if if P A A P Q if P A A P Q P
65 47 64 oveq12d φ n abs G n + abs H n = Q if if P A A P Q if P A A P Q + if if P A A P Q if P A A P Q - P
66 eqid abs F = abs F
67 66 ovolfsval F : 2 n abs F n = 2 nd F n 1 st F n
68 9 67 sylan φ n abs F n = 2 nd F n 1 st F n
69 13 12 oveq12i Q P = 2 nd F n 1 st F n
70 68 69 eqtr4di φ n abs F n = Q P
71 28 65 70 3eqtr4d φ n abs G n + abs H n = abs F n