Metamath Proof Explorer


Theorem ioombl1lem4

Description: Lemma for ioombl1 . (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Hypotheses ioombl1.b B = A +∞
ioombl1.a φ A
ioombl1.e φ E
ioombl1.v φ vol * E
ioombl1.c φ C +
ioombl1.s S = seq 1 + abs F
ioombl1.t T = seq 1 + abs G
ioombl1.u U = seq 1 + abs H
ioombl1.f1 φ F : 2
ioombl1.f2 φ E ran . F
ioombl1.f3 φ sup ran S * < vol * E + C
ioombl1.p P = 1 st F n
ioombl1.q Q = 2 nd F n
ioombl1.g G = n if if P A A P Q if P A A P Q Q
ioombl1.h H = n P if if P A A P Q if P A A P Q
Assertion ioombl1lem4 φ vol * E B + vol * E B vol * E + C

Proof

Step Hyp Ref Expression
1 ioombl1.b B = A +∞
2 ioombl1.a φ A
3 ioombl1.e φ E
4 ioombl1.v φ vol * E
5 ioombl1.c φ C +
6 ioombl1.s S = seq 1 + abs F
7 ioombl1.t T = seq 1 + abs G
8 ioombl1.u U = seq 1 + abs H
9 ioombl1.f1 φ F : 2
10 ioombl1.f2 φ E ran . F
11 ioombl1.f3 φ sup ran S * < vol * E + C
12 ioombl1.p P = 1 st F n
13 ioombl1.q Q = 2 nd F n
14 ioombl1.g G = n if if P A A P Q if P A A P Q Q
15 ioombl1.h H = n P if if P A A P Q if P A A P Q
16 inss1 E B E
17 ovolsscl E B E E vol * E vol * E B
18 16 3 4 17 mp3an2i φ vol * E B
19 difss E B E
20 ovolsscl E B E E vol * E vol * E B
21 19 3 4 20 mp3an2i φ vol * E B
22 18 21 readdcld φ vol * E B + vol * E B
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ioombl1lem2 φ sup ran S * <
24 5 rpred φ C
25 4 24 readdcld φ vol * E + C
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ioombl1lem1 φ G : 2 H : 2
27 26 simpld φ G : 2
28 eqid abs G = abs G
29 28 7 ovolsf G : 2 T : 0 +∞
30 27 29 syl φ T : 0 +∞
31 30 frnd φ ran T 0 +∞
32 rge0ssre 0 +∞
33 31 32 sstrdi φ ran T
34 1nn 1
35 30 fdmd φ dom T =
36 34 35 eleqtrrid φ 1 dom T
37 36 ne0d φ dom T
38 dm0rn0 dom T = ran T =
39 38 necon3bii dom T ran T
40 37 39 sylib φ ran T
41 30 ffvelrnda φ j T j 0 +∞
42 32 41 sselid φ j T j
43 eqid abs F = abs F
44 43 6 ovolsf F : 2 S : 0 +∞
45 9 44 syl φ S : 0 +∞
46 45 ffvelrnda φ j S j 0 +∞
47 32 46 sselid φ j S j
48 23 adantr φ j sup ran S * <
49 simpr φ j j
50 nnuz = 1
51 49 50 eleqtrdi φ j j 1
52 simpl φ j φ
53 elfznn n 1 j n
54 28 ovolfsf G : 2 abs G : 0 +∞
55 27 54 syl φ abs G : 0 +∞
56 55 ffvelrnda φ n abs G n 0 +∞
57 32 56 sselid φ n abs G n
58 52 53 57 syl2an φ j n 1 j abs G n
59 43 ovolfsf F : 2 abs F : 0 +∞
60 9 59 syl φ abs F : 0 +∞
61 60 ffvelrnda φ n abs F n 0 +∞
62 elrege0 abs F n 0 +∞ abs F n 0 abs F n
63 61 62 sylib φ n abs F n 0 abs F n
64 63 simpld φ n abs F n
65 52 53 64 syl2an φ j n 1 j abs F n
66 26 simprd φ H : 2
67 eqid abs H = abs H
68 67 ovolfsf H : 2 abs H : 0 +∞
69 66 68 syl φ abs H : 0 +∞
70 69 ffvelrnda φ n abs H n 0 +∞
71 elrege0 abs H n 0 +∞ abs H n 0 abs H n
72 70 71 sylib φ n abs H n 0 abs H n
73 72 simprd φ n 0 abs H n
74 72 simpld φ n abs H n
75 57 74 addge01d φ n 0 abs H n abs G n abs G n + abs H n
76 73 75 mpbid φ n abs G n abs G n + abs H n
77 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ioombl1lem3 φ n abs G n + abs H n = abs F n
78 76 77 breqtrd φ n abs G n abs F n
79 52 53 78 syl2an φ j n 1 j abs G n abs F n
80 51 58 65 79 serle φ j seq 1 + abs G j seq 1 + abs F j
81 7 fveq1i T j = seq 1 + abs G j
82 6 fveq1i S j = seq 1 + abs F j
83 80 81 82 3brtr4g φ j T j S j
84 1zzd φ 1
85 eqidd φ n abs F n = abs F n
86 63 simprd φ n 0 abs F n
87 45 frnd φ ran S 0 +∞
88 icossxr 0 +∞ *
89 87 88 sstrdi φ ran S *
90 89 adantr φ k ran S *
91 45 ffnd φ S Fn
92 fnfvelrn S Fn k S k ran S
93 91 92 sylan φ k S k ran S
94 supxrub ran S * S k ran S S k sup ran S * <
95 90 93 94 syl2anc φ k S k sup ran S * <
96 95 ralrimiva φ k S k sup ran S * <
97 brralrspcev sup ran S * < k S k sup ran S * < x k S k x
98 23 96 97 syl2anc φ x k S k x
99 50 6 84 85 64 86 98 isumsup2 φ S sup ran S <
100 87 32 sstrdi φ ran S
101 45 fdmd φ dom S =
102 34 101 eleqtrrid φ 1 dom S
103 102 ne0d φ dom S
104 dm0rn0 dom S = ran S =
105 104 necon3bii dom S ran S
106 103 105 sylib φ ran S
107 breq1 z = S k z x S k x
108 107 ralrn S Fn z ran S z x k S k x
109 91 108 syl φ z ran S z x k S k x
110 109 rexbidv φ x z ran S z x x k S k x
111 98 110 mpbird φ x z ran S z x
112 supxrre ran S ran S x z ran S z x sup ran S * < = sup ran S <
113 100 106 111 112 syl3anc φ sup ran S * < = sup ran S <
114 99 113 breqtrrd φ S sup ran S * <
115 114 adantr φ j S sup ran S * <
116 6 115 eqbrtrrid φ j seq 1 + abs F sup ran S * <
117 64 adantlr φ j n abs F n
118 86 adantlr φ j n 0 abs F n
119 50 49 116 117 118 climserle φ j seq 1 + abs F j sup ran S * <
120 82 119 eqbrtrid φ j S j sup ran S * <
121 42 47 48 83 120 letrd φ j T j sup ran S * <
122 121 ralrimiva φ j T j sup ran S * <
123 brralrspcev sup ran S * < j T j sup ran S * < x j T j x
124 23 122 123 syl2anc φ x j T j x
125 30 ffnd φ T Fn
126 breq1 z = T j z x T j x
127 126 ralrn T Fn z ran T z x j T j x
128 125 127 syl φ z ran T z x j T j x
129 128 rexbidv φ x z ran T z x x j T j x
130 124 129 mpbird φ x z ran T z x
131 33 40 130 suprcld φ sup ran T <
132 67 8 ovolsf H : 2 U : 0 +∞
133 66 132 syl φ U : 0 +∞
134 133 frnd φ ran U 0 +∞
135 134 32 sstrdi φ ran U
136 133 fdmd φ dom U =
137 34 136 eleqtrrid φ 1 dom U
138 137 ne0d φ dom U
139 dm0rn0 dom U = ran U =
140 139 necon3bii dom U ran U
141 138 140 sylib φ ran U
142 133 ffvelrnda φ j U j 0 +∞
143 32 142 sselid φ j U j
144 52 53 74 syl2an φ j n 1 j abs H n
145 elrege0 abs G n 0 +∞ abs G n 0 abs G n
146 56 145 sylib φ n abs G n 0 abs G n
147 146 simprd φ n 0 abs G n
148 74 57 addge02d φ n 0 abs G n abs H n abs G n + abs H n
149 147 148 mpbid φ n abs H n abs G n + abs H n
150 149 77 breqtrd φ n abs H n abs F n
151 52 53 150 syl2an φ j n 1 j abs H n abs F n
152 51 144 65 151 serle φ j seq 1 + abs H j seq 1 + abs F j
153 8 fveq1i U j = seq 1 + abs H j
154 152 153 82 3brtr4g φ j U j S j
155 143 47 48 154 120 letrd φ j U j sup ran S * <
156 155 ralrimiva φ j U j sup ran S * <
157 brralrspcev sup ran S * < j U j sup ran S * < x j U j x
158 23 156 157 syl2anc φ x j U j x
159 133 ffnd φ U Fn
160 breq1 z = U j z x U j x
161 160 ralrn U Fn z ran U z x j U j x
162 159 161 syl φ z ran U z x j U j x
163 162 rexbidv φ x z ran U z x x j U j x
164 158 163 mpbird φ x z ran U z x
165 135 141 164 suprcld φ sup ran U <
166 ssralv E B E x E n 1 st F n < x x < 2 nd F n x E B n 1 st F n < x x < 2 nd F n
167 16 166 ax-mp x E n 1 st F n < x x < 2 nd F n x E B n 1 st F n < x x < 2 nd F n
168 12 breq1i P < x 1 st F n < x
169 ovolfcl F : 2 n 1 st F n 2 nd F n 1 st F n 2 nd F n
170 9 169 sylan φ n 1 st F n 2 nd F n 1 st F n 2 nd F n
171 170 simp1d φ n 1 st F n
172 12 171 eqeltrid φ n P
173 172 adantlr φ x E B n P
174 16 3 sstrid φ E B
175 174 sselda φ x E B x
176 175 adantr φ x E B n x
177 ltle P x P < x P x
178 173 176 177 syl2anc φ x E B n P < x P x
179 simpr φ n n
180 opex if if P A A P Q if P A A P Q Q V
181 14 fvmpt2 n if if P A A P Q if P A A P Q Q V G n = if if P A A P Q if P A A P Q Q
182 179 180 181 sylancl φ n G n = if if P A A P Q if P A A P Q Q
183 182 fveq2d φ n 1 st G n = 1 st if if P A A P Q if P A A P Q Q
184 2 adantr φ n A
185 184 172 ifcld φ n if P A A P
186 170 simp2d φ n 2 nd F n
187 13 186 eqeltrid φ n Q
188 185 187 ifcld φ n if if P A A P Q if P A A P Q
189 op1stg if if P A A P Q if P A A P Q Q 1 st if if P A A P Q if P A A P Q Q = if if P A A P Q if P A A P Q
190 188 187 189 syl2anc φ n 1 st if if P A A P Q if P A A P Q Q = if if P A A P Q if P A A P Q
191 183 190 eqtrd φ n 1 st G n = if if P A A P Q if P A A P Q
192 191 ad2ant2r φ x E B n P x 1 st G n = if if P A A P Q if P A A P Q
193 188 ad2ant2r φ x E B n P x if if P A A P Q if P A A P Q
194 185 ad2ant2r φ x E B n P x if P A A P
195 174 ad2antrr φ x E B n P x E B
196 simplr φ x E B n P x x E B
197 195 196 sseldd φ x E B n P x x
198 187 ad2ant2r φ x E B n P x Q
199 min1 if P A A P Q if if P A A P Q if P A A P Q if P A A P
200 194 198 199 syl2anc φ x E B n P x if if P A A P Q if P A A P Q if P A A P
201 2 ad2antrr φ x E B n P x A
202 elinel2 x E B x B
203 202 ad2antlr φ x E B n P x x B
204 2 rexrd φ A *
205 pnfxr +∞ *
206 elioo2 A * +∞ * x A +∞ x A < x x < +∞
207 204 205 206 sylancl φ x A +∞ x A < x x < +∞
208 1 eleq2i x B x A +∞
209 ltpnf x x < +∞
210 209 adantr x A < x x < +∞
211 210 pm4.71i x A < x x A < x x < +∞
212 df-3an x A < x x < +∞ x A < x x < +∞
213 211 212 bitr4i x A < x x A < x x < +∞
214 207 208 213 3bitr4g φ x B x A < x
215 simpr x A < x A < x
216 214 215 syl6bi φ x B A < x
217 216 ad2antrr φ x E B n P x x B A < x
218 203 217 mpd φ x E B n P x A < x
219 201 197 218 ltled φ x E B n P x A x
220 simprr φ x E B n P x P x
221 breq1 A = if P A A P A x if P A A P x
222 breq1 P = if P A A P P x if P A A P x
223 221 222 ifboth A x P x if P A A P x
224 219 220 223 syl2anc φ x E B n P x if P A A P x
225 193 194 197 200 224 letrd φ x E B n P x if if P A A P Q if P A A P Q x
226 192 225 eqbrtrd φ x E B n P x 1 st G n x
227 226 expr φ x E B n P x 1 st G n x
228 178 227 syld φ x E B n P < x 1 st G n x
229 168 228 syl5bir φ x E B n 1 st F n < x 1 st G n x
230 13 breq2i x < Q x < 2 nd F n
231 187 adantlr φ x E B n Q
232 ltle x Q x < Q x Q
233 176 231 232 syl2anc φ x E B n x < Q x Q
234 230 233 syl5bir φ x E B n x < 2 nd F n x Q
235 182 fveq2d φ n 2 nd G n = 2 nd if if P A A P Q if P A A P Q Q
236 op2ndg if if P A A P Q if P A A P Q Q 2 nd if if P A A P Q if P A A P Q Q = Q
237 188 187 236 syl2anc φ n 2 nd if if P A A P Q if P A A P Q Q = Q
238 235 237 eqtrd φ n 2 nd G n = Q
239 238 adantlr φ x E B n 2 nd G n = Q
240 239 breq2d φ x E B n x 2 nd G n x Q
241 234 240 sylibrd φ x E B n x < 2 nd F n x 2 nd G n
242 229 241 anim12d φ x E B n 1 st F n < x x < 2 nd F n 1 st G n x x 2 nd G n
243 242 reximdva φ x E B n 1 st F n < x x < 2 nd F n n 1 st G n x x 2 nd G n
244 243 ralimdva φ x E B n 1 st F n < x x < 2 nd F n x E B n 1 st G n x x 2 nd G n
245 167 244 syl5 φ x E n 1 st F n < x x < 2 nd F n x E B n 1 st G n x x 2 nd G n
246 ovolfioo E F : 2 E ran . F x E n 1 st F n < x x < 2 nd F n
247 3 9 246 syl2anc φ E ran . F x E n 1 st F n < x x < 2 nd F n
248 ovolficc E B G : 2 E B ran . G x E B n 1 st G n x x 2 nd G n
249 174 27 248 syl2anc φ E B ran . G x E B n 1 st G n x x 2 nd G n
250 245 247 249 3imtr4d φ E ran . F E B ran . G
251 10 250 mpd φ E B ran . G
252 7 ovollb2 G : 2 E B ran . G vol * E B sup ran T * <
253 27 251 252 syl2anc φ vol * E B sup ran T * <
254 supxrre ran T ran T x z ran T z x sup ran T * < = sup ran T <
255 33 40 130 254 syl3anc φ sup ran T * < = sup ran T <
256 253 255 breqtrd φ vol * E B sup ran T <
257 ssralv E B E x E n 1 st F n < x x < 2 nd F n x E B n 1 st F n < x x < 2 nd F n
258 19 257 ax-mp x E n 1 st F n < x x < 2 nd F n x E B n 1 st F n < x x < 2 nd F n
259 172 adantlr φ x E B n P
260 19 3 sstrid φ E B
261 260 sselda φ x E B x
262 261 adantr φ x E B n x
263 259 262 177 syl2anc φ x E B n P < x P x
264 168 263 syl5bir φ x E B n 1 st F n < x P x
265 opex P if if P A A P Q if P A A P Q V
266 15 fvmpt2 n P if if P A A P Q if P A A P Q V H n = P if if P A A P Q if P A A P Q
267 179 265 266 sylancl φ n H n = P if if P A A P Q if P A A P Q
268 267 fveq2d φ n 1 st H n = 1 st P if if P A A P Q if P A A P Q
269 op1stg P if if P A A P Q if P A A P Q 1 st P if if P A A P Q if P A A P Q = P
270 172 188 269 syl2anc φ n 1 st P if if P A A P Q if P A A P Q = P
271 268 270 eqtrd φ n 1 st H n = P
272 271 adantlr φ x E B n 1 st H n = P
273 272 breq1d φ x E B n 1 st H n x P x
274 264 273 sylibrd φ x E B n 1 st F n < x 1 st H n x
275 187 adantlr φ x E B n Q
276 262 275 232 syl2anc φ x E B n x < Q x Q
277 260 ad2antrr φ x E B n x Q E B
278 simplr φ x E B n x Q x E B
279 277 278 sseldd φ x E B n x Q x
280 2 ad2antrr φ x E B n x Q A
281 172 ad2ant2r φ x E B n x Q P
282 280 281 ifcld φ x E B n x Q if P A A P
283 eldifn x E B ¬ x B
284 283 ad2antlr φ x E B n x Q ¬ x B
285 279 biantrurd φ x E B n x Q A < x x A < x
286 214 ad2antrr φ x E B n x Q x B x A < x
287 285 286 bitr4d φ x E B n x Q A < x x B
288 284 287 mtbird φ x E B n x Q ¬ A < x
289 279 280 288 nltled φ x E B n x Q x A
290 max2 P A A if P A A P
291 281 280 290 syl2anc φ x E B n x Q A if P A A P
292 279 280 282 289 291 letrd φ x E B n x Q x if P A A P
293 simprr φ x E B n x Q x Q
294 breq2 if P A A P = if if P A A P Q if P A A P Q x if P A A P x if if P A A P Q if P A A P Q
295 breq2 Q = if if P A A P Q if P A A P Q x Q x if if P A A P Q if P A A P Q
296 294 295 ifboth x if P A A P x Q x if if P A A P Q if P A A P Q
297 292 293 296 syl2anc φ x E B n x Q x if if P A A P Q if P A A P Q
298 267 fveq2d φ n 2 nd H n = 2 nd P if if P A A P Q if P A A P Q
299 op2ndg P if if P A A P Q if P A A P Q 2 nd P if if P A A P Q if P A A P Q = if if P A A P Q if P A A P Q
300 172 188 299 syl2anc φ n 2 nd P if if P A A P Q if P A A P Q = if if P A A P Q if P A A P Q
301 298 300 eqtrd φ n 2 nd H n = if if P A A P Q if P A A P Q
302 301 ad2ant2r φ x E B n x Q 2 nd H n = if if P A A P Q if P A A P Q
303 297 302 breqtrrd φ x E B n x Q x 2 nd H n
304 303 expr φ x E B n x Q x 2 nd H n
305 276 304 syld φ x E B n x < Q x 2 nd H n
306 230 305 syl5bir φ x E B n x < 2 nd F n x 2 nd H n
307 274 306 anim12d φ x E B n 1 st F n < x x < 2 nd F n 1 st H n x x 2 nd H n
308 307 reximdva φ x E B n 1 st F n < x x < 2 nd F n n 1 st H n x x 2 nd H n
309 308 ralimdva φ x E B n 1 st F n < x x < 2 nd F n x E B n 1 st H n x x 2 nd H n
310 258 309 syl5 φ x E n 1 st F n < x x < 2 nd F n x E B n 1 st H n x x 2 nd H n
311 ovolficc E B H : 2 E B ran . H x E B n 1 st H n x x 2 nd H n
312 260 66 311 syl2anc φ E B ran . H x E B n 1 st H n x x 2 nd H n
313 310 247 312 3imtr4d φ E ran . F E B ran . H
314 10 313 mpd φ E B ran . H
315 8 ovollb2 H : 2 E B ran . H vol * E B sup ran U * <
316 66 314 315 syl2anc φ vol * E B sup ran U * <
317 supxrre ran U ran U x z ran U z x sup ran U * < = sup ran U <
318 135 141 164 317 syl3anc φ sup ran U * < = sup ran U <
319 316 318 breqtrd φ vol * E B sup ran U <
320 18 21 131 165 256 319 le2addd φ vol * E B + vol * E B sup ran T < + sup ran U <
321 eqidd φ n abs G n = abs G n
322 50 7 84 321 57 147 124 isumsup2 φ T sup ran T <
323 seqex seq 1 + abs F V
324 6 323 eqeltri S V
325 324 a1i φ S V
326 eqidd φ n abs H n = abs H n
327 50 8 84 326 74 73 158 isumsup2 φ U sup ran U <
328 42 recnd φ j T j
329 143 recnd φ j U j
330 57 recnd φ n abs G n
331 52 53 330 syl2an φ j n 1 j abs G n
332 74 recnd φ n abs H n
333 52 53 332 syl2an φ j n 1 j abs H n
334 77 eqcomd φ n abs F n = abs G n + abs H n
335 52 53 334 syl2an φ j n 1 j abs F n = abs G n + abs H n
336 51 331 333 335 seradd φ j seq 1 + abs F j = seq 1 + abs G j + seq 1 + abs H j
337 81 153 oveq12i T j + U j = seq 1 + abs G j + seq 1 + abs H j
338 336 82 337 3eqtr4g φ j S j = T j + U j
339 50 84 322 325 327 328 329 338 climadd φ S sup ran T < + sup ran U <
340 climuni S sup ran T < + sup ran U < S sup ran S * < sup ran T < + sup ran U < = sup ran S * <
341 339 114 340 syl2anc φ sup ran T < + sup ran U < = sup ran S * <
342 320 341 breqtrd φ vol * E B + vol * E B sup ran S * <
343 22 23 25 342 11 letrd φ vol * E B + vol * E B vol * E + C