Metamath Proof Explorer


Theorem ioomidp

Description: The midpoint is an element of the open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion ioomidp A B A < B A + B 2 A B

Proof

Step Hyp Ref Expression
1 rexr A A *
2 1 3ad2ant1 A B A < B A *
3 rexr B B *
4 3 3ad2ant2 A B A < B B *
5 readdcl A B A + B
6 5 rehalfcld A B A + B 2
7 6 3adant3 A B A < B A + B 2
8 avglt1 A B A < B A < A + B 2
9 8 biimp3a A B A < B A < A + B 2
10 avglt2 A B A < B A + B 2 < B
11 10 biimp3a A B A < B A + B 2 < B
12 2 4 7 9 11 eliood A B A < B A + B 2 A B