Metamath Proof Explorer


Theorem ioon0

Description: An open interval of extended reals is nonempty iff the lower argument is less than the upper argument. (Contributed by NM, 2-Mar-2007)

Ref Expression
Assertion ioon0 A * B * A B A < B

Proof

Step Hyp Ref Expression
1 ioo0 A * B * A B = B A
2 xrlenlt B * A * B A ¬ A < B
3 2 ancoms A * B * B A ¬ A < B
4 1 3 bitr2d A * B * ¬ A < B A B =
5 4 necon1abid A * B * A B A < B