Metamath Proof Explorer


Theorem ioondisj2

Description: A condition for two open intervals not to be disjoint. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion ioondisj2 A * B * A < B C * D * C < D A < D D B A B C D

Proof

Step Hyp Ref Expression
1 simpll1 A * B * A < B C * D * C < D A < D D B A *
2 simpll2 A * B * A < B C * D * C < D A < D D B B *
3 simplr1 A * B * A < B C * D * C < D A < D D B C *
4 simplr2 A * B * A < B C * D * C < D A < D D B D *
5 iooin A * B * C * D * A B C D = if A C C A if B D B D
6 1 2 3 4 5 syl22anc A * B * A < B C * D * C < D A < D D B A B C D = if A C C A if B D B D
7 simprr A * B * A < B C * D * C < D A < D D B D B
8 xrmineq B * D * D B if B D B D = D
9 2 4 7 8 syl3anc A * B * A < B C * D * C < D A < D D B if B D B D = D
10 9 oveq2d A * B * A < B C * D * C < D A < D D B if A C C A if B D B D = if A C C A D
11 simpr A * B * A < B C * D * C < D A < D D B A C A C
12 11 iftrued A * B * A < B C * D * C < D A < D D B A C if A C C A = C
13 simplr3 A * B * A < B C * D * C < D A < D D B C < D
14 13 adantr A * B * A < B C * D * C < D A < D D B A C C < D
15 12 14 eqbrtrd A * B * A < B C * D * C < D A < D D B A C if A C C A < D
16 simpr A * B * A < B C * D * C < D A < D D B ¬ A C ¬ A C
17 16 iffalsed A * B * A < B C * D * C < D A < D D B ¬ A C if A C C A = A
18 simplrl A * B * A < B C * D * C < D A < D D B ¬ A C A < D
19 17 18 eqbrtrd A * B * A < B C * D * C < D A < D D B ¬ A C if A C C A < D
20 15 19 pm2.61dan A * B * A < B C * D * C < D A < D D B if A C C A < D
21 3 1 ifcld A * B * A < B C * D * C < D A < D D B if A C C A *
22 ioon0 if A C C A * D * if A C C A D if A C C A < D
23 21 4 22 syl2anc A * B * A < B C * D * C < D A < D D B if A C C A D if A C C A < D
24 20 23 mpbird A * B * A < B C * D * C < D A < D D B if A C C A D
25 10 24 eqnetrd A * B * A < B C * D * C < D A < D D B if A C C A if B D B D
26 6 25 eqnetrd A * B * A < B C * D * C < D A < D D B A B C D