Metamath Proof Explorer


Theorem iooneg

Description: Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007)

Ref Expression
Assertion iooneg A B C C A B C B A

Proof

Step Hyp Ref Expression
1 ltneg A C A < C C < A
2 1 3adant2 A B C A < C C < A
3 ltneg C B C < B B < C
4 3 ancoms B C C < B B < C
5 4 3adant1 A B C C < B B < C
6 2 5 anbi12d A B C A < C C < B C < A B < C
7 6 biancomd A B C A < C C < B B < C C < A
8 rexr A A *
9 rexr B B *
10 rexr C C *
11 elioo5 A * B * C * C A B A < C C < B
12 8 9 10 11 syl3an A B C C A B A < C C < B
13 renegcl B B
14 renegcl A A
15 renegcl C C
16 rexr B B *
17 rexr A A *
18 rexr C C *
19 elioo5 B * A * C * C B A B < C C < A
20 16 17 18 19 syl3an B A C C B A B < C C < A
21 13 14 15 20 syl3an B A C C B A B < C C < A
22 21 3com12 A B C C B A B < C C < A
23 7 12 22 3bitr4d A B C C A B C B A