Metamath Proof Explorer


Theorem ioontr

Description: The interior of an interval in the standard topology on RR is the open interval itself. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion ioontr int topGen ran . A B = A B

Proof

Step Hyp Ref Expression
1 iooretop A B topGen ran .
2 retop topGen ran . Top
3 ioossre A B
4 uniretop = topGen ran .
5 4 isopn3 topGen ran . Top A B A B topGen ran . int topGen ran . A B = A B
6 2 3 5 mp2an A B topGen ran . int topGen ran . A B = A B
7 1 6 mpbi int topGen ran . A B = A B