Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The floor and ceiling functions
ioopnfsup
Next ⟩
icopnfsup
Metamath Proof Explorer
Ascii
Unicode
Theorem
ioopnfsup
Description:
An upper set of reals is unbounded above.
(Contributed by
Mario Carneiro
, 7-May-2016)
Ref
Expression
Assertion
ioopnfsup
⊢
A
∈
ℝ
*
∧
A
≠
+∞
→
sup
A
+∞
ℝ
*
<
=
+∞
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
A
∈
ℝ
*
∧
A
≠
+∞
→
A
∈
ℝ
*
2
pnfxr
⊢
+∞
∈
ℝ
*
3
2
a1i
⊢
A
∈
ℝ
*
∧
A
≠
+∞
→
+∞
∈
ℝ
*
4
nltpnft
⊢
A
∈
ℝ
*
→
A
=
+∞
↔
¬
A
<
+∞
5
4
necon2abid
⊢
A
∈
ℝ
*
→
A
<
+∞
↔
A
≠
+∞
6
5
biimpar
⊢
A
∈
ℝ
*
∧
A
≠
+∞
→
A
<
+∞
7
ioon0
⊢
A
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
A
+∞
≠
∅
↔
A
<
+∞
8
3
7
syldan
⊢
A
∈
ℝ
*
∧
A
≠
+∞
→
A
+∞
≠
∅
↔
A
<
+∞
9
6
8
mpbird
⊢
A
∈
ℝ
*
∧
A
≠
+∞
→
A
+∞
≠
∅
10
df-ioo
⊢
.
=
x
∈
ℝ
*
,
y
∈
ℝ
*
⟼
z
∈
ℝ
*
|
x
<
z
∧
z
<
y
11
idd
⊢
w
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
w
<
+∞
→
w
<
+∞
12
xrltle
⊢
w
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
w
<
+∞
→
w
≤
+∞
13
idd
⊢
A
∈
ℝ
*
∧
w
∈
ℝ
*
→
A
<
w
→
A
<
w
14
xrltle
⊢
A
∈
ℝ
*
∧
w
∈
ℝ
*
→
A
<
w
→
A
≤
w
15
10
11
12
13
14
ixxub
⊢
A
∈
ℝ
*
∧
+∞
∈
ℝ
*
∧
A
+∞
≠
∅
→
sup
A
+∞
ℝ
*
<
=
+∞
16
1
3
9
15
syl3anc
⊢
A
∈
ℝ
*
∧
A
≠
+∞
→
sup
A
+∞
ℝ
*
<
=
+∞