Metamath Proof Explorer


Theorem ioorcl

Description: The function F does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)

Ref Expression
Hypothesis ioorf.1 F = x ran . if x = 0 0 sup x * < sup x * <
Assertion ioorcl A ran . vol * A F A 2

Proof

Step Hyp Ref Expression
1 ioorf.1 F = x ran . if x = 0 0 sup x * < sup x * <
2 1 ioorf F : ran . * × *
3 2 ffvelrni A ran . F A * × *
4 3 adantr A ran . vol * A F A * × *
5 4 elin1d A ran . vol * A F A
6 1 ioorval A ran . F A = if A = 0 0 sup A * < sup A * <
7 6 adantr A ran . vol * A F A = if A = 0 0 sup A * < sup A * <
8 iftrue A = if A = 0 0 sup A * < sup A * < = 0 0
9 7 8 sylan9eq A ran . vol * A A = F A = 0 0
10 0re 0
11 opelxpi 0 0 0 0 2
12 10 10 11 mp2an 0 0 2
13 9 12 eqeltrdi A ran . vol * A A = F A 2
14 ioof . : * × * 𝒫
15 ffn . : * × * 𝒫 . Fn * × *
16 ovelrn . Fn * × * A ran . a * b * A = a b
17 14 15 16 mp2b A ran . a * b * A = a b
18 1 ioorinv2 a b F a b = a b
19 18 adantl vol * a b a b F a b = a b
20 ioorcl2 a b vol * a b a b
21 20 ancoms vol * a b a b a b
22 opelxpi a b a b 2
23 21 22 syl vol * a b a b a b 2
24 19 23 eqeltrd vol * a b a b F a b 2
25 fveq2 A = a b vol * A = vol * a b
26 25 eleq1d A = a b vol * A vol * a b
27 neeq1 A = a b A a b
28 26 27 anbi12d A = a b vol * A A vol * a b a b
29 fveq2 A = a b F A = F a b
30 29 eleq1d A = a b F A 2 F a b 2
31 28 30 imbi12d A = a b vol * A A F A 2 vol * a b a b F a b 2
32 24 31 mpbiri A = a b vol * A A F A 2
33 32 a1i a * b * A = a b vol * A A F A 2
34 33 rexlimivv a * b * A = a b vol * A A F A 2
35 17 34 sylbi A ran . vol * A A F A 2
36 35 impl A ran . vol * A A F A 2
37 13 36 pm2.61dane A ran . vol * A F A 2
38 5 37 elind A ran . vol * A F A 2