Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
|
2 |
|
elioore |
|
3 |
2
|
adantr |
|
4 |
|
peano2re |
|
5 |
4
|
adantl |
|
6 |
3 5
|
resubcld |
|
7 |
6
|
rexrd |
|
8 |
|
eliooxr |
|
9 |
8
|
adantr |
|
10 |
9
|
simpld |
|
11 |
3
|
rexrd |
|
12 |
|
ltp1 |
|
13 |
12
|
adantl |
|
14 |
|
0red |
|
15 |
|
simpr |
|
16 |
|
ioossre |
|
17 |
|
ovolge0 |
|
18 |
16 17
|
mp1i |
|
19 |
|
lep1 |
|
20 |
19
|
adantl |
|
21 |
14 15 5 18 20
|
letrd |
|
22 |
3 5
|
subge02d |
|
23 |
21 22
|
mpbid |
|
24 |
|
ovolioo |
|
25 |
6 3 23 24
|
syl3anc |
|
26 |
3
|
recnd |
|
27 |
5
|
recnd |
|
28 |
26 27
|
nncand |
|
29 |
25 28
|
eqtrd |
|
30 |
29
|
adantr |
|
31 |
|
iooss1 |
|
32 |
10 31
|
sylan |
|
33 |
9
|
simprd |
|
34 |
|
eliooord |
|
35 |
34
|
adantr |
|
36 |
35
|
simprd |
|
37 |
11 33 36
|
xrltled |
|
38 |
|
iooss2 |
|
39 |
33 37 38
|
syl2anc |
|
40 |
39
|
adantr |
|
41 |
32 40
|
sstrd |
|
42 |
|
ovolss |
|
43 |
41 16 42
|
sylancl |
|
44 |
30 43
|
eqbrtrrd |
|
45 |
44
|
ex |
|
46 |
10 7
|
xrlenltd |
|
47 |
5 15
|
lenltd |
|
48 |
45 46 47
|
3imtr3d |
|
49 |
13 48
|
mt4d |
|
50 |
35
|
simpld |
|
51 |
|
xrre2 |
|
52 |
7 10 11 49 50 51
|
syl32anc |
|
53 |
3 5
|
readdcld |
|
54 |
53
|
rexrd |
|
55 |
3 5
|
addge01d |
|
56 |
21 55
|
mpbid |
|
57 |
|
ovolioo |
|
58 |
3 53 56 57
|
syl3anc |
|
59 |
26 27
|
pncan2d |
|
60 |
58 59
|
eqtrd |
|
61 |
60
|
adantr |
|
62 |
|
iooss2 |
|
63 |
33 62
|
sylan |
|
64 |
10 11 50
|
xrltled |
|
65 |
|
iooss1 |
|
66 |
10 64 65
|
syl2anc |
|
67 |
66
|
adantr |
|
68 |
63 67
|
sstrd |
|
69 |
|
ovolss |
|
70 |
68 16 69
|
sylancl |
|
71 |
61 70
|
eqbrtrrd |
|
72 |
71
|
ex |
|
73 |
54 33
|
xrlenltd |
|
74 |
72 73 47
|
3imtr3d |
|
75 |
13 74
|
mt4d |
|
76 |
|
xrre2 |
|
77 |
11 33 54 36 75 76
|
syl32anc |
|
78 |
52 77
|
jca |
|
79 |
78
|
ex |
|
80 |
79
|
exlimiv |
|
81 |
1 80
|
sylbi |
|
82 |
81
|
imp |
|