Metamath Proof Explorer


Theorem ioorcl2

Description: An open interval with finite volume has real endpoints. (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Assertion ioorcl2 A B vol * A B A B

Proof

Step Hyp Ref Expression
1 n0 A B z z A B
2 elioore z A B z
3 2 adantr z A B vol * A B z
4 peano2re vol * A B vol * A B + 1
5 4 adantl z A B vol * A B vol * A B + 1
6 3 5 resubcld z A B vol * A B z vol * A B + 1
7 6 rexrd z A B vol * A B z vol * A B + 1 *
8 eliooxr z A B A * B *
9 8 adantr z A B vol * A B A * B *
10 9 simpld z A B vol * A B A *
11 3 rexrd z A B vol * A B z *
12 ltp1 vol * A B vol * A B < vol * A B + 1
13 12 adantl z A B vol * A B vol * A B < vol * A B + 1
14 0red z A B vol * A B 0
15 simpr z A B vol * A B vol * A B
16 ioossre A B
17 ovolge0 A B 0 vol * A B
18 16 17 mp1i z A B vol * A B 0 vol * A B
19 lep1 vol * A B vol * A B vol * A B + 1
20 19 adantl z A B vol * A B vol * A B vol * A B + 1
21 14 15 5 18 20 letrd z A B vol * A B 0 vol * A B + 1
22 3 5 subge02d z A B vol * A B 0 vol * A B + 1 z vol * A B + 1 z
23 21 22 mpbid z A B vol * A B z vol * A B + 1 z
24 ovolioo z vol * A B + 1 z z vol * A B + 1 z vol * z vol * A B + 1 z = z z vol * A B + 1
25 6 3 23 24 syl3anc z A B vol * A B vol * z vol * A B + 1 z = z z vol * A B + 1
26 3 recnd z A B vol * A B z
27 5 recnd z A B vol * A B vol * A B + 1
28 26 27 nncand z A B vol * A B z z vol * A B + 1 = vol * A B + 1
29 25 28 eqtrd z A B vol * A B vol * z vol * A B + 1 z = vol * A B + 1
30 29 adantr z A B vol * A B A z vol * A B + 1 vol * z vol * A B + 1 z = vol * A B + 1
31 iooss1 A * A z vol * A B + 1 z vol * A B + 1 z A z
32 10 31 sylan z A B vol * A B A z vol * A B + 1 z vol * A B + 1 z A z
33 9 simprd z A B vol * A B B *
34 eliooord z A B A < z z < B
35 34 adantr z A B vol * A B A < z z < B
36 35 simprd z A B vol * A B z < B
37 11 33 36 xrltled z A B vol * A B z B
38 iooss2 B * z B A z A B
39 33 37 38 syl2anc z A B vol * A B A z A B
40 39 adantr z A B vol * A B A z vol * A B + 1 A z A B
41 32 40 sstrd z A B vol * A B A z vol * A B + 1 z vol * A B + 1 z A B
42 ovolss z vol * A B + 1 z A B A B vol * z vol * A B + 1 z vol * A B
43 41 16 42 sylancl z A B vol * A B A z vol * A B + 1 vol * z vol * A B + 1 z vol * A B
44 30 43 eqbrtrrd z A B vol * A B A z vol * A B + 1 vol * A B + 1 vol * A B
45 44 ex z A B vol * A B A z vol * A B + 1 vol * A B + 1 vol * A B
46 10 7 xrlenltd z A B vol * A B A z vol * A B + 1 ¬ z vol * A B + 1 < A
47 5 15 lenltd z A B vol * A B vol * A B + 1 vol * A B ¬ vol * A B < vol * A B + 1
48 45 46 47 3imtr3d z A B vol * A B ¬ z vol * A B + 1 < A ¬ vol * A B < vol * A B + 1
49 13 48 mt4d z A B vol * A B z vol * A B + 1 < A
50 35 simpld z A B vol * A B A < z
51 xrre2 z vol * A B + 1 * A * z * z vol * A B + 1 < A A < z A
52 7 10 11 49 50 51 syl32anc z A B vol * A B A
53 3 5 readdcld z A B vol * A B z + vol * A B + 1
54 53 rexrd z A B vol * A B z + vol * A B + 1 *
55 3 5 addge01d z A B vol * A B 0 vol * A B + 1 z z + vol * A B + 1
56 21 55 mpbid z A B vol * A B z z + vol * A B + 1
57 ovolioo z z + vol * A B + 1 z z + vol * A B + 1 vol * z z + vol * A B + 1 = z + vol * A B + 1 - z
58 3 53 56 57 syl3anc z A B vol * A B vol * z z + vol * A B + 1 = z + vol * A B + 1 - z
59 26 27 pncan2d z A B vol * A B z + vol * A B + 1 - z = vol * A B + 1
60 58 59 eqtrd z A B vol * A B vol * z z + vol * A B + 1 = vol * A B + 1
61 60 adantr z A B vol * A B z + vol * A B + 1 B vol * z z + vol * A B + 1 = vol * A B + 1
62 iooss2 B * z + vol * A B + 1 B z z + vol * A B + 1 z B
63 33 62 sylan z A B vol * A B z + vol * A B + 1 B z z + vol * A B + 1 z B
64 10 11 50 xrltled z A B vol * A B A z
65 iooss1 A * A z z B A B
66 10 64 65 syl2anc z A B vol * A B z B A B
67 66 adantr z A B vol * A B z + vol * A B + 1 B z B A B
68 63 67 sstrd z A B vol * A B z + vol * A B + 1 B z z + vol * A B + 1 A B
69 ovolss z z + vol * A B + 1 A B A B vol * z z + vol * A B + 1 vol * A B
70 68 16 69 sylancl z A B vol * A B z + vol * A B + 1 B vol * z z + vol * A B + 1 vol * A B
71 61 70 eqbrtrrd z A B vol * A B z + vol * A B + 1 B vol * A B + 1 vol * A B
72 71 ex z A B vol * A B z + vol * A B + 1 B vol * A B + 1 vol * A B
73 54 33 xrlenltd z A B vol * A B z + vol * A B + 1 B ¬ B < z + vol * A B + 1
74 72 73 47 3imtr3d z A B vol * A B ¬ B < z + vol * A B + 1 ¬ vol * A B < vol * A B + 1
75 13 74 mt4d z A B vol * A B B < z + vol * A B + 1
76 xrre2 z * B * z + vol * A B + 1 * z < B B < z + vol * A B + 1 B
77 11 33 54 36 75 76 syl32anc z A B vol * A B B
78 52 77 jca z A B vol * A B A B
79 78 ex z A B vol * A B A B
80 79 exlimiv z z A B vol * A B A B
81 1 80 sylbi A B vol * A B A B
82 81 imp A B vol * A B A B