| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
|
| 2 |
|
elioore |
|
| 3 |
2
|
adantr |
|
| 4 |
|
peano2re |
|
| 5 |
4
|
adantl |
|
| 6 |
3 5
|
resubcld |
|
| 7 |
6
|
rexrd |
|
| 8 |
|
eliooxr |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
simpld |
|
| 11 |
3
|
rexrd |
|
| 12 |
|
ltp1 |
|
| 13 |
12
|
adantl |
|
| 14 |
|
0red |
|
| 15 |
|
simpr |
|
| 16 |
|
ioossre |
|
| 17 |
|
ovolge0 |
|
| 18 |
16 17
|
mp1i |
|
| 19 |
|
lep1 |
|
| 20 |
19
|
adantl |
|
| 21 |
14 15 5 18 20
|
letrd |
|
| 22 |
3 5
|
subge02d |
|
| 23 |
21 22
|
mpbid |
|
| 24 |
|
ovolioo |
|
| 25 |
6 3 23 24
|
syl3anc |
|
| 26 |
3
|
recnd |
|
| 27 |
5
|
recnd |
|
| 28 |
26 27
|
nncand |
|
| 29 |
25 28
|
eqtrd |
|
| 30 |
29
|
adantr |
|
| 31 |
|
iooss1 |
|
| 32 |
10 31
|
sylan |
|
| 33 |
9
|
simprd |
|
| 34 |
|
eliooord |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
simprd |
|
| 37 |
11 33 36
|
xrltled |
|
| 38 |
|
iooss2 |
|
| 39 |
33 37 38
|
syl2anc |
|
| 40 |
39
|
adantr |
|
| 41 |
32 40
|
sstrd |
|
| 42 |
|
ovolss |
|
| 43 |
41 16 42
|
sylancl |
|
| 44 |
30 43
|
eqbrtrrd |
|
| 45 |
44
|
ex |
|
| 46 |
10 7
|
xrlenltd |
|
| 47 |
5 15
|
lenltd |
|
| 48 |
45 46 47
|
3imtr3d |
|
| 49 |
13 48
|
mt4d |
|
| 50 |
35
|
simpld |
|
| 51 |
|
xrre2 |
|
| 52 |
7 10 11 49 50 51
|
syl32anc |
|
| 53 |
3 5
|
readdcld |
|
| 54 |
53
|
rexrd |
|
| 55 |
3 5
|
addge01d |
|
| 56 |
21 55
|
mpbid |
|
| 57 |
|
ovolioo |
|
| 58 |
3 53 56 57
|
syl3anc |
|
| 59 |
26 27
|
pncan2d |
|
| 60 |
58 59
|
eqtrd |
|
| 61 |
60
|
adantr |
|
| 62 |
|
iooss2 |
|
| 63 |
33 62
|
sylan |
|
| 64 |
10 11 50
|
xrltled |
|
| 65 |
|
iooss1 |
|
| 66 |
10 64 65
|
syl2anc |
|
| 67 |
66
|
adantr |
|
| 68 |
63 67
|
sstrd |
|
| 69 |
|
ovolss |
|
| 70 |
68 16 69
|
sylancl |
|
| 71 |
61 70
|
eqbrtrrd |
|
| 72 |
71
|
ex |
|
| 73 |
54 33
|
xrlenltd |
|
| 74 |
72 73 47
|
3imtr3d |
|
| 75 |
13 74
|
mt4d |
|
| 76 |
|
xrre2 |
|
| 77 |
11 33 54 36 75 76
|
syl32anc |
|
| 78 |
52 77
|
jca |
|
| 79 |
78
|
ex |
|
| 80 |
79
|
exlimiv |
|
| 81 |
1 80
|
sylbi |
|
| 82 |
81
|
imp |
|