Metamath Proof Explorer


Theorem ioorebas

Description: Open intervals are elements of the set of all open intervals. (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Assertion ioorebas A B ran .

Proof

Step Hyp Ref Expression
1 id A B = A B =
2 iooid 0 0 =
3 ioof . : * × * 𝒫
4 ffn . : * × * 𝒫 . Fn * × *
5 3 4 ax-mp . Fn * × *
6 0xr 0 *
7 fnovrn . Fn * × * 0 * 0 * 0 0 ran .
8 5 6 6 7 mp3an 0 0 ran .
9 2 8 eqeltrri ran .
10 1 9 eqeltrdi A B = A B ran .
11 n0 A B x x A B
12 eliooxr x A B A * B *
13 fnovrn . Fn * × * A * B * A B ran .
14 5 13 mp3an1 A * B * A B ran .
15 12 14 syl x A B A B ran .
16 15 exlimiv x x A B A B ran .
17 11 16 sylbi A B A B ran .
18 10 17 pm2.61ine A B ran .