Metamath Proof Explorer


Theorem ioorf

Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)

Ref Expression
Hypothesis ioorf.1 F = x ran . if x = 0 0 sup x * < sup x * <
Assertion ioorf F : ran . * × *

Proof

Step Hyp Ref Expression
1 ioorf.1 F = x ran . if x = 0 0 sup x * < sup x * <
2 ioof . : * × * 𝒫
3 ffn . : * × * 𝒫 . Fn * × *
4 ovelrn . Fn * × * x ran . a * b * x = a b
5 2 3 4 mp2b x ran . a * b * x = a b
6 0le0 0 0
7 df-br 0 0 0 0
8 6 7 mpbi 0 0
9 0xr 0 *
10 opelxpi 0 * 0 * 0 0 * × *
11 9 9 10 mp2an 0 0 * × *
12 8 11 elini 0 0 * × *
13 12 a1i a * b * x = a b x = 0 0 * × *
14 simplr a * b * x = a b ¬ x = x = a b
15 14 infeq1d a * b * x = a b ¬ x = sup x * < = sup a b * <
16 simplll a * b * x = a b ¬ x = a *
17 simpllr a * b * x = a b ¬ x = b *
18 simpr a * b * x = a b ¬ x = ¬ x =
19 18 neqned a * b * x = a b ¬ x = x
20 14 19 eqnetrrd a * b * x = a b ¬ x = a b
21 df-ioo . = x * , y * z * | x < z z < y
22 idd w * b * w < b w < b
23 xrltle w * b * w < b w b
24 idd a * w * a < w a < w
25 xrltle a * w * a < w a w
26 21 22 23 24 25 ixxlb a * b * a b sup a b * < = a
27 16 17 20 26 syl3anc a * b * x = a b ¬ x = sup a b * < = a
28 15 27 eqtrd a * b * x = a b ¬ x = sup x * < = a
29 14 supeq1d a * b * x = a b ¬ x = sup x * < = sup a b * <
30 21 22 23 24 25 ixxub a * b * a b sup a b * < = b
31 16 17 20 30 syl3anc a * b * x = a b ¬ x = sup a b * < = b
32 29 31 eqtrd a * b * x = a b ¬ x = sup x * < = b
33 28 32 opeq12d a * b * x = a b ¬ x = sup x * < sup x * < = a b
34 ioon0 a * b * a b a < b
35 34 ad2antrr a * b * x = a b ¬ x = a b a < b
36 20 35 mpbid a * b * x = a b ¬ x = a < b
37 xrltle a * b * a < b a b
38 37 ad2antrr a * b * x = a b ¬ x = a < b a b
39 36 38 mpd a * b * x = a b ¬ x = a b
40 df-br a b a b
41 39 40 sylib a * b * x = a b ¬ x = a b
42 opelxpi a * b * a b * × *
43 42 ad2antrr a * b * x = a b ¬ x = a b * × *
44 41 43 elind a * b * x = a b ¬ x = a b * × *
45 33 44 eqeltrd a * b * x = a b ¬ x = sup x * < sup x * < * × *
46 13 45 ifclda a * b * x = a b if x = 0 0 sup x * < sup x * < * × *
47 46 ex a * b * x = a b if x = 0 0 sup x * < sup x * < * × *
48 47 rexlimivv a * b * x = a b if x = 0 0 sup x * < sup x * < * × *
49 5 48 sylbi x ran . if x = 0 0 sup x * < sup x * < * × *
50 1 49 fmpti F : ran . * × *