Metamath Proof Explorer


Theorem ioorval

Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)

Ref Expression
Hypothesis ioorf.1 F = x ran . if x = 0 0 sup x * < sup x * <
Assertion ioorval A ran . F A = if A = 0 0 sup A * < sup A * <

Proof

Step Hyp Ref Expression
1 ioorf.1 F = x ran . if x = 0 0 sup x * < sup x * <
2 eqeq1 x = A x = A =
3 infeq1 x = A sup x * < = sup A * <
4 supeq1 x = A sup x * < = sup A * <
5 3 4 opeq12d x = A sup x * < sup x * < = sup A * < sup A * <
6 2 5 ifbieq2d x = A if x = 0 0 sup x * < sup x * < = if A = 0 0 sup A * < sup A * <
7 opex 0 0 V
8 opex sup A * < sup A * < V
9 7 8 ifex if A = 0 0 sup A * < sup A * < V
10 6 1 9 fvmpt A ran . F A = if A = 0 0 sup A * < sup A * <