Metamath Proof Explorer


Theorem iooshf

Description: Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008)

Ref Expression
Assertion iooshf A B C D A B C D A C + B D + B

Proof

Step Hyp Ref Expression
1 ltaddsub C B A C + B < A C < A B
2 1 3com13 A B C C + B < A C < A B
3 2 3expa A B C C + B < A C < A B
4 3 adantrr A B C D C + B < A C < A B
5 ltsubadd A B D A B < D A < D + B
6 5 bicomd A B D A < D + B A B < D
7 6 3expa A B D A < D + B A B < D
8 7 adantrl A B C D A < D + B A B < D
9 4 8 anbi12d A B C D C + B < A A < D + B C < A B A B < D
10 readdcl C B C + B
11 10 rexrd C B C + B *
12 11 ad2ant2rl C D A B C + B *
13 readdcl D B D + B
14 13 rexrd D B D + B *
15 14 ad2ant2l C D A B D + B *
16 rexr A A *
17 16 ad2antrl C D A B A *
18 elioo5 C + B * D + B * A * A C + B D + B C + B < A A < D + B
19 12 15 17 18 syl3anc C D A B A C + B D + B C + B < A A < D + B
20 19 ancoms A B C D A C + B D + B C + B < A A < D + B
21 rexr C C *
22 21 ad2antrl A B C D C *
23 rexr D D *
24 23 ad2antll A B C D D *
25 resubcl A B A B
26 25 rexrd A B A B *
27 26 adantr A B C D A B *
28 elioo5 C * D * A B * A B C D C < A B A B < D
29 22 24 27 28 syl3anc A B C D A B C D C < A B A B < D
30 9 20 29 3bitr4rd A B C D A B C D A C + B D + B