Metamath Proof Explorer


Theorem iooss1

Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iooss1 A * A B B C A C

Proof

Step Hyp Ref Expression
1 df-ioo . = x * , y * z * | x < z z < y
2 xrlelttr A * B * w * A B B < w A < w
3 1 1 2 ixxss1 A * A B B C A C