Metamath Proof Explorer


Theorem iooss2

Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion iooss2 C * B C A B A C

Proof

Step Hyp Ref Expression
1 df-ioo . = x * , y * z * | x < z z < y
2 xrltletr w * B * C * w < B B C w < C
3 1 1 2 ixxss2 C * B C A B A C