Database
REAL AND COMPLEX NUMBERS
Order sets
Real number intervals
ioossicc
Next ⟩
iccssred
Metamath Proof Explorer
Ascii
Unicode
Theorem
ioossicc
Description:
An open interval is a subset of its closure.
(Contributed by
Paul Chapman
, 18-Oct-2007)
Ref
Expression
Assertion
ioossicc
⊢
A
B
⊆
A
B
Proof
Step
Hyp
Ref
Expression
1
df-ioo
⊢
.
=
x
∈
ℝ
*
,
y
∈
ℝ
*
⟼
z
∈
ℝ
*
|
x
<
z
∧
z
<
y
2
df-icc
⊢
.
=
x
∈
ℝ
*
,
y
∈
ℝ
*
⟼
z
∈
ℝ
*
|
x
≤
z
∧
z
≤
y
3
xrltle
⊢
A
∈
ℝ
*
∧
w
∈
ℝ
*
→
A
<
w
→
A
≤
w
4
xrltle
⊢
w
∈
ℝ
*
∧
B
∈
ℝ
*
→
w
<
B
→
w
≤
B
5
1
2
3
4
ixxssixx
⊢
A
B
⊆
A
B