Metamath Proof Explorer


Theorem ioossicc

Description: An open interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007)

Ref Expression
Assertion ioossicc A B A B

Proof

Step Hyp Ref Expression
1 df-ioo . = x * , y * z * | x < z z < y
2 df-icc . = x * , y * z * | x z z y
3 xrltle A * w * A < w A w
4 xrltle w * B * w < B w B
5 1 2 3 4 ixxssixx A B A B