Metamath Proof Explorer


Theorem ioossioo

Description: Condition for an open interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 26-Sep-2017)

Ref Expression
Assertion ioossioo A * B * A C D B C D A B

Proof

Step Hyp Ref Expression
1 df-ioo . = a * , b * x * | a < x x < b
2 xrlelttr A * C * w * A C C < w A < w
3 xrltletr w * D * B * w < D D B w < B
4 1 1 2 3 ixxss12 A * B * A C D B C D A B