Metamath Proof Explorer


Theorem ioounsn

Description: The union of an open interval with its upper endpoint is a left-open right-closed interval. (Contributed by Jon Pennant, 8-Jun-2019)

Ref Expression
Assertion ioounsn A * B * A < B A B B = A B

Proof

Step Hyp Ref Expression
1 simp2 A * B * A < B B *
2 iccid B * B B = B
3 1 2 syl A * B * A < B B B = B
4 3 uneq2d A * B * A < B A B B B = A B B
5 simp1 A * B * A < B A *
6 simp3 A * B * A < B A < B
7 1 xrleidd A * B * A < B B B
8 df-ioo . = x * , y * z * | x < z z < y
9 df-icc . = x * , y * z * | x z z y
10 xrlenlt B * w * B w ¬ w < B
11 df-ioc . = x * , y * z * | x < z z y
12 simpl1 w * B * B * w < B B B w *
13 simpl2 w * B * B * w < B B B B *
14 simprl w * B * B * w < B B B w < B
15 12 13 14 xrltled w * B * B * w < B B B w B
16 15 ex w * B * B * w < B B B w B
17 xrltletr A * B * w * A < B B w A < w
18 8 9 10 11 16 17 ixxun A * B * B * A < B B B A B B B = A B
19 5 1 1 6 7 18 syl32anc A * B * A < B A B B B = A B
20 4 19 eqtr3d A * B * A < B A B B = A B