Metamath Proof Explorer


Theorem iooval

Description: Value of the open interval function. (Contributed by NM, 24-Dec-2006) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion iooval A * B * A B = x * | A < x x < B

Proof

Step Hyp Ref Expression
1 df-ioo . = y * , z * x * | y < x x < z
2 1 ixxval A * B * A B = x * | A < x x < B