Metamath Proof Explorer


Theorem ioovolcl

Description: An open real interval has finite volume. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Assertion ioovolcl A B vol A B

Proof

Step Hyp Ref Expression
1 ioombl A B dom vol
2 mblvol A B dom vol vol A B = vol * A B
3 1 2 mp1i A B vol A B = vol * A B
4 ltle B A B < A B A
5 4 ancoms A B B < A B A
6 5 imdistani A B B < A A B B A
7 rexr A A *
8 rexr B B *
9 ioo0 A * B * A B = B A
10 7 8 9 syl2an A B A B = B A
11 10 biimpar A B B A A B =
12 fveq2 A B = vol * A B = vol *
13 ovol0 vol * = 0
14 12 13 eqtrdi A B = vol * A B = 0
15 0re 0
16 14 15 eqeltrdi A B = vol * A B
17 6 11 16 3syl A B B < A vol * A B
18 ovolioo A B A B vol * A B = B A
19 18 3expa A B A B vol * A B = B A
20 resubcl B A B A
21 20 ancoms A B B A
22 21 adantr A B A B B A
23 19 22 eqeltrd A B A B vol * A B
24 simpr A B B
25 simpl A B A
26 17 23 24 25 ltlecasei A B vol * A B
27 3 26 eqeltrd A B vol A B