Metamath Proof Explorer


Theorem iota2

Description: The unique element such that ph . (Contributed by Jeff Madsen, 1-Jun-2011) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypothesis iota2.1 x = A φ ψ
Assertion iota2 A B ∃! x φ ψ ι x | φ = A

Proof

Step Hyp Ref Expression
1 iota2.1 x = A φ ψ
2 elex A B A V
3 simpl A V ∃! x φ A V
4 simpr A V ∃! x φ ∃! x φ
5 1 adantl A V ∃! x φ x = A φ ψ
6 nfv x A V
7 nfeu1 x ∃! x φ
8 6 7 nfan x A V ∃! x φ
9 nfvd A V ∃! x φ x ψ
10 nfcvd A V ∃! x φ _ x A
11 3 4 5 8 9 10 iota2df A V ∃! x φ ψ ι x | φ = A
12 2 11 sylan A B ∃! x φ ψ ι x | φ = A