Metamath Proof Explorer


Theorem iota2d

Description: A condition that allows us to represent "the unique element such that ph " with a class expression A . (Contributed by NM, 30-Dec-2014)

Ref Expression
Hypotheses iota2df.1 φ B V
iota2df.2 φ ∃! x ψ
iota2df.3 φ x = B ψ χ
Assertion iota2d φ χ ι x | ψ = B

Proof

Step Hyp Ref Expression
1 iota2df.1 φ B V
2 iota2df.2 φ ∃! x ψ
3 iota2df.3 φ x = B ψ χ
4 nfv x φ
5 nfvd φ x χ
6 nfcvd φ _ x B
7 1 2 3 4 5 6 iota2df φ χ ι x | ψ = B