Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Definite description binder (inverted iota)
iota4
Next ⟩
iota4an
Metamath Proof Explorer
Ascii
Unicode
Theorem
iota4
Description:
Theorem *14.22 in
WhiteheadRussell
p. 190.
(Contributed by
Andrew Salmon
, 12-Jul-2011)
Ref
Expression
Assertion
iota4
⊢
∃!
x
φ
→
[
˙
ι
x
|
φ
/
x
]
˙
φ
Proof
Step
Hyp
Ref
Expression
1
eu6
⊢
∃!
x
φ
↔
∃
z
∀
x
φ
↔
x
=
z
2
biimpr
⊢
φ
↔
x
=
z
→
x
=
z
→
φ
3
2
alimi
⊢
∀
x
φ
↔
x
=
z
→
∀
x
x
=
z
→
φ
4
sb6
⊢
z
x
φ
↔
∀
x
x
=
z
→
φ
5
3
4
sylibr
⊢
∀
x
φ
↔
x
=
z
→
z
x
φ
6
iotaval
⊢
∀
x
φ
↔
x
=
z
→
ι
x
|
φ
=
z
7
6
eqcomd
⊢
∀
x
φ
↔
x
=
z
→
z
=
ι
x
|
φ
8
dfsbcq2
⊢
z
=
ι
x
|
φ
→
z
x
φ
↔
[
˙
ι
x
|
φ
/
x
]
˙
φ
9
7
8
syl
⊢
∀
x
φ
↔
x
=
z
→
z
x
φ
↔
[
˙
ι
x
|
φ
/
x
]
˙
φ
10
5
9
mpbid
⊢
∀
x
φ
↔
x
=
z
→
[
˙
ι
x
|
φ
/
x
]
˙
φ
11
10
exlimiv
⊢
∃
z
∀
x
φ
↔
x
=
z
→
[
˙
ι
x
|
φ
/
x
]
˙
φ
12
1
11
sylbi
⊢
∃!
x
φ
→
[
˙
ι
x
|
φ
/
x
]
˙
φ