Metamath Proof Explorer


Theorem iota4

Description: Theorem *14.22 in WhiteheadRussell p. 190. (Contributed by Andrew Salmon, 12-Jul-2011)

Ref Expression
Assertion iota4 ∃! x φ [˙ ι x | φ / x]˙ φ

Proof

Step Hyp Ref Expression
1 eu6 ∃! x φ z x φ x = z
2 biimpr φ x = z x = z φ
3 2 alimi x φ x = z x x = z φ
4 sb6 z x φ x x = z φ
5 3 4 sylibr x φ x = z z x φ
6 iotaval x φ x = z ι x | φ = z
7 6 eqcomd x φ x = z z = ι x | φ
8 dfsbcq2 z = ι x | φ z x φ [˙ ι x | φ / x]˙ φ
9 7 8 syl x φ x = z z x φ [˙ ι x | φ / x]˙ φ
10 5 9 mpbid x φ x = z [˙ ι x | φ / x]˙ φ
11 10 exlimiv z x φ x = z [˙ ι x | φ / x]˙ φ
12 1 11 sylbi ∃! x φ [˙ ι x | φ / x]˙ φ