Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Definite description binder (inverted iota)
iota4an
Next ⟩
iota5
Metamath Proof Explorer
Ascii
Unicode
Theorem
iota4an
Description:
Theorem *14.23 in
WhiteheadRussell
p. 191.
(Contributed by
Andrew Salmon
, 12-Jul-2011)
Ref
Expression
Assertion
iota4an
⊢
∃!
x
φ
∧
ψ
→
[
˙
ι
x
|
φ
∧
ψ
/
x
]
˙
φ
Proof
Step
Hyp
Ref
Expression
1
iota4
⊢
∃!
x
φ
∧
ψ
→
[
˙
ι
x
|
φ
∧
ψ
/
x
]
˙
φ
∧
ψ
2
iotaex
⊢
ι
x
|
φ
∧
ψ
∈
V
3
simpl
⊢
φ
∧
ψ
→
φ
4
3
sbcth
⊢
ι
x
|
φ
∧
ψ
∈
V
→
[
˙
ι
x
|
φ
∧
ψ
/
x
]
˙
φ
∧
ψ
→
φ
5
2
4
ax-mp
⊢
[
˙
ι
x
|
φ
∧
ψ
/
x
]
˙
φ
∧
ψ
→
φ
6
sbcimg
⊢
ι
x
|
φ
∧
ψ
∈
V
→
[
˙
ι
x
|
φ
∧
ψ
/
x
]
˙
φ
∧
ψ
→
φ
↔
[
˙
ι
x
|
φ
∧
ψ
/
x
]
˙
φ
∧
ψ
→
[
˙
ι
x
|
φ
∧
ψ
/
x
]
˙
φ
7
2
6
ax-mp
⊢
[
˙
ι
x
|
φ
∧
ψ
/
x
]
˙
φ
∧
ψ
→
φ
↔
[
˙
ι
x
|
φ
∧
ψ
/
x
]
˙
φ
∧
ψ
→
[
˙
ι
x
|
φ
∧
ψ
/
x
]
˙
φ
8
5
7
mpbi
⊢
[
˙
ι
x
|
φ
∧
ψ
/
x
]
˙
φ
∧
ψ
→
[
˙
ι
x
|
φ
∧
ψ
/
x
]
˙
φ
9
1
8
syl
⊢
∃!
x
φ
∧
ψ
→
[
˙
ι
x
|
φ
∧
ψ
/
x
]
˙
φ