Metamath Proof Explorer


Theorem iota5

Description: A method for computing iota. (Contributed by NM, 17-Sep-2013)

Ref Expression
Hypothesis iota5.1 φ A V ψ x = A
Assertion iota5 φ A V ι x | ψ = A

Proof

Step Hyp Ref Expression
1 iota5.1 φ A V ψ x = A
2 1 alrimiv φ A V x ψ x = A
3 eqeq2 y = A x = y x = A
4 3 bibi2d y = A ψ x = y ψ x = A
5 4 albidv y = A x ψ x = y x ψ x = A
6 eqeq2 y = A ι x | ψ = y ι x | ψ = A
7 5 6 imbi12d y = A x ψ x = y ι x | ψ = y x ψ x = A ι x | ψ = A
8 iotaval x ψ x = y ι x | ψ = y
9 7 8 vtoclg A V x ψ x = A ι x | ψ = A
10 9 adantl φ A V x ψ x = A ι x | ψ = A
11 2 10 mpd φ A V ι x | ψ = A