Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Definite description binder (inverted iota)
iota5
Next ⟩
iotabidv
Metamath Proof Explorer
Ascii
Unicode
Theorem
iota5
Description:
A method for computing iota.
(Contributed by
NM
, 17-Sep-2013)
Ref
Expression
Hypothesis
iota5.1
⊢
φ
∧
A
∈
V
→
ψ
↔
x
=
A
Assertion
iota5
⊢
φ
∧
A
∈
V
→
ι
x
|
ψ
=
A
Proof
Step
Hyp
Ref
Expression
1
iota5.1
⊢
φ
∧
A
∈
V
→
ψ
↔
x
=
A
2
1
alrimiv
⊢
φ
∧
A
∈
V
→
∀
x
ψ
↔
x
=
A
3
eqeq2
⊢
y
=
A
→
x
=
y
↔
x
=
A
4
3
bibi2d
⊢
y
=
A
→
ψ
↔
x
=
y
↔
ψ
↔
x
=
A
5
4
albidv
⊢
y
=
A
→
∀
x
ψ
↔
x
=
y
↔
∀
x
ψ
↔
x
=
A
6
eqeq2
⊢
y
=
A
→
ι
x
|
ψ
=
y
↔
ι
x
|
ψ
=
A
7
5
6
imbi12d
⊢
y
=
A
→
∀
x
ψ
↔
x
=
y
→
ι
x
|
ψ
=
y
↔
∀
x
ψ
↔
x
=
A
→
ι
x
|
ψ
=
A
8
iotaval
⊢
∀
x
ψ
↔
x
=
y
→
ι
x
|
ψ
=
y
9
7
8
vtoclg
⊢
A
∈
V
→
∀
x
ψ
↔
x
=
A
→
ι
x
|
ψ
=
A
10
9
adantl
⊢
φ
∧
A
∈
V
→
∀
x
ψ
↔
x
=
A
→
ι
x
|
ψ
=
A
11
2
10
mpd
⊢
φ
∧
A
∈
V
→
ι
x
|
ψ
=
A