Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Definite description binder (inverted iota)
iotabi
Next ⟩
uniabio
Metamath Proof Explorer
Ascii
Unicode
Theorem
iotabi
Description:
Equivalence theorem for descriptions.
(Contributed by
Andrew Salmon
, 30-Jun-2011)
Ref
Expression
Assertion
iotabi
⊢
∀
x
φ
↔
ψ
→
ι
x
|
φ
=
ι
x
|
ψ
Proof
Step
Hyp
Ref
Expression
1
abbi
⊢
∀
x
φ
↔
ψ
→
x
|
φ
=
x
|
ψ
2
1
eqeq1d
⊢
∀
x
φ
↔
ψ
→
x
|
φ
=
z
↔
x
|
ψ
=
z
3
2
abbidv
⊢
∀
x
φ
↔
ψ
→
z
|
x
|
φ
=
z
=
z
|
x
|
ψ
=
z
4
3
unieqd
⊢
∀
x
φ
↔
ψ
→
⋃
z
|
x
|
φ
=
z
=
⋃
z
|
x
|
ψ
=
z
5
df-iota
⊢
ι
x
|
φ
=
⋃
z
|
x
|
φ
=
z
6
df-iota
⊢
ι
x
|
ψ
=
⋃
z
|
x
|
ψ
=
z
7
4
5
6
3eqtr4g
⊢
∀
x
φ
↔
ψ
→
ι
x
|
φ
=
ι
x
|
ψ