Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Definite description binder (inverted iota)
iotabidv
Next ⟩
iotabii
Metamath Proof Explorer
Ascii
Unicode
Theorem
iotabidv
Description:
Formula-building deduction for iota.
(Contributed by
NM
, 20-Aug-2011)
Ref
Expression
Hypothesis
iotabidv.1
⊢
φ
→
ψ
↔
χ
Assertion
iotabidv
⊢
φ
→
ι
x
|
ψ
=
ι
x
|
χ
Proof
Step
Hyp
Ref
Expression
1
iotabidv.1
⊢
φ
→
ψ
↔
χ
2
1
alrimiv
⊢
φ
→
∀
x
ψ
↔
χ
3
iotabi
⊢
∀
x
ψ
↔
χ
→
ι
x
|
ψ
=
ι
x
|
χ
4
2
3
syl
⊢
φ
→
ι
x
|
ψ
=
ι
x
|
χ