Metamath Proof Explorer


Theorem iotabidv

Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011)

Ref Expression
Hypothesis iotabidv.1 φ ψ χ
Assertion iotabidv φ ι x | ψ = ι x | χ

Proof

Step Hyp Ref Expression
1 iotabidv.1 φ ψ χ
2 1 alrimiv φ x ψ χ
3 iotabi x ψ χ ι x | ψ = ι x | χ
4 2 3 syl φ ι x | ψ = ι x | χ