Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Definite description binder (inverted iota)
iotabii
Next ⟩
iotacl
Metamath Proof Explorer
Ascii
Unicode
Theorem
iotabii
Description:
Formula-building deduction for iota.
(Contributed by
Mario Carneiro
, 2-Oct-2015)
Ref
Expression
Hypothesis
iotabii.1
⊢
φ
↔
ψ
Assertion
iotabii
⊢
ι
x
|
φ
=
ι
x
|
ψ
Proof
Step
Hyp
Ref
Expression
1
iotabii.1
⊢
φ
↔
ψ
2
iotabi
⊢
∀
x
φ
↔
ψ
→
ι
x
|
φ
=
ι
x
|
ψ
3
2
1
mpg
⊢
ι
x
|
φ
=
ι
x
|
ψ