Metamath Proof Explorer


Theorem iotaeq

Description: Equality theorem for descriptions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Andrew Salmon, 30-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion iotaeq x x = y ι x | φ = ι y | φ

Proof

Step Hyp Ref Expression
1 drsb1 x x = y z x φ z y φ
2 df-clab z x | φ z x φ
3 df-clab z y | φ z y φ
4 1 2 3 3bitr4g x x = y z x | φ z y | φ
5 4 eqrdv x x = y x | φ = y | φ
6 5 eqeq1d x x = y x | φ = z y | φ = z
7 6 abbidv x x = y z | x | φ = z = z | y | φ = z
8 7 unieqd x x = y z | x | φ = z = z | y | φ = z
9 df-iota ι x | φ = z | x | φ = z
10 df-iota ι y | φ = z | y | φ = z
11 8 9 10 3eqtr4g x x = y ι x | φ = ι y | φ