Metamath Proof Explorer


Theorem iotaex

Description: Theorem 8.23 in Quine p. 58. This theorem proves the existence of the iota class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotaex ι x | φ V

Proof

Step Hyp Ref Expression
1 iotaval x φ x = z ι x | φ = z
2 1 eqcomd x φ x = z z = ι x | φ
3 2 eximi z x φ x = z z z = ι x | φ
4 eu6 ∃! x φ z x φ x = z
5 isset ι x | φ V z z = ι x | φ
6 3 4 5 3imtr4i ∃! x φ ι x | φ V
7 iotanul ¬ ∃! x φ ι x | φ =
8 0ex V
9 7 8 eqeltrdi ¬ ∃! x φ ι x | φ V
10 6 9 pm2.61i ι x | φ V