Metamath Proof Explorer


Theorem iotaexeu

Description: The iota class exists. This theorem does not require ax-nul for its proof. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotaexeu ∃! x φ ι x | φ V

Proof

Step Hyp Ref Expression
1 iotaval x φ x = y ι x | φ = y
2 1 eqcomd x φ x = y y = ι x | φ
3 2 eximi y x φ x = y y y = ι x | φ
4 eu6 ∃! x φ y x φ x = y
5 isset ι x | φ V y y = ι x | φ
6 3 4 5 3imtr4i ∃! x φ ι x | φ V