Metamath Proof Explorer


Theorem iotain

Description: Equivalence between two different forms of iota . (Contributed by Andrew Salmon, 15-Jul-2011)

Ref Expression
Assertion iotain ∃! x φ x | φ = ι x | φ

Proof

Step Hyp Ref Expression
1 eu6 ∃! x φ y x φ x = y
2 vex y V
3 2 intsn y = y
4 abbi1 x φ x = y x | φ = x | x = y
5 df-sn y = x | x = y
6 4 5 eqtr4di x φ x = y x | φ = y
7 6 inteqd x φ x = y x | φ = y
8 iotaval x φ x = y ι x | φ = y
9 3 7 8 3eqtr4a x φ x = y x | φ = ι x | φ
10 9 exlimiv y x φ x = y x | φ = ι x | φ
11 1 10 sylbi ∃! x φ x | φ = ι x | φ