Metamath Proof Explorer


Theorem iotaint

Description: Equivalence between two different forms of iota . (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion iotaint ∃! x φ ι x | φ = x | φ

Proof

Step Hyp Ref Expression
1 iotauni ∃! x φ ι x | φ = x | φ
2 uniintab ∃! x φ x | φ = x | φ
3 2 biimpi ∃! x φ x | φ = x | φ
4 1 3 eqtrd ∃! x φ ι x | φ = x | φ