Metamath Proof Explorer


Theorem iotajust

Description: Soundness justification theorem for df-iota . (Contributed by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion iotajust y | x | φ = y = z | x | φ = z

Proof

Step Hyp Ref Expression
1 sneq y = w y = w
2 1 eqeq2d y = w x | φ = y x | φ = w
3 2 cbvabv y | x | φ = y = w | x | φ = w
4 sneq w = z w = z
5 4 eqeq2d w = z x | φ = w x | φ = z
6 5 cbvabv w | x | φ = w = z | x | φ = z
7 3 6 eqtri y | x | φ = y = z | x | φ = z
8 7 unieqi y | x | φ = y = z | x | φ = z