Metamath Proof Explorer


Theorem iotasbc2

Description: Theorem *14.111 in WhiteheadRussell p. 184. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotasbc2 ∃!xφ∃!xψ[˙ιx|φ/y]˙[˙ιx|ψ/z]˙χyzxφx=yxψx=zχ

Proof

Step Hyp Ref Expression
1 iotasbc ∃!xφ[˙ιx|φ/y]˙[˙ιx|ψ/z]˙χyxφx=y[˙ιx|ψ/z]˙χ
2 iotasbc ∃!xψ[˙ιx|ψ/z]˙χzxψx=zχ
3 2 anbi2d ∃!xψxφx=y[˙ιx|ψ/z]˙χxφx=yzxψx=zχ
4 3anass xφx=yxψx=zχxφx=yxψx=zχ
5 4 exbii zxφx=yxψx=zχzxφx=yxψx=zχ
6 19.42v zxφx=yxψx=zχxφx=yzxψx=zχ
7 5 6 bitr2i xφx=yzxψx=zχzxφx=yxψx=zχ
8 3 7 bitrdi ∃!xψxφx=y[˙ιx|ψ/z]˙χzxφx=yxψx=zχ
9 8 exbidv ∃!xψyxφx=y[˙ιx|ψ/z]˙χyzxφx=yxψx=zχ
10 1 9 sylan9bb ∃!xφ∃!xψ[˙ιx|φ/y]˙[˙ιx|ψ/z]˙χyzxφx=yxψx=zχ