Metamath Proof Explorer


Theorem iotasbc5

Description: Theorem *14.205 in WhiteheadRussell p. 190. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotasbc5 ∃! x φ [˙ ι x | φ / y]˙ ψ y y = ι x | φ ψ

Proof

Step Hyp Ref Expression
1 sbc5 [˙ ι x | φ / y]˙ ψ y y = ι x | φ ψ
2 1 a1i ∃! x φ [˙ ι x | φ / y]˙ ψ y y = ι x | φ ψ