Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Principia Mathematica * 13 and * 14
iotasbc5
Next ⟩
pm14.24
Metamath Proof Explorer
Ascii
Unicode
Theorem
iotasbc5
Description:
Theorem *14.205 in
WhiteheadRussell
p. 190.
(Contributed by
Andrew Salmon
, 11-Jul-2011)
Ref
Expression
Assertion
iotasbc5
⊢
∃!
x
φ
→
[
˙
ι
x
|
φ
/
y
]
˙
ψ
↔
∃
y
y
=
ι
x
|
φ
∧
ψ
Proof
Step
Hyp
Ref
Expression
1
sbc5
⊢
[
˙
ι
x
|
φ
/
y
]
˙
ψ
↔
∃
y
y
=
ι
x
|
φ
∧
ψ
2
1
a1i
⊢
∃!
x
φ
→
[
˙
ι
x
|
φ
/
y
]
˙
ψ
↔
∃
y
y
=
ι
x
|
φ
∧
ψ