Metamath Proof Explorer


Theorem iotasbcq

Description: Theorem *14.272 in WhiteheadRussell p. 193. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotasbcq x φ ψ [˙ ι x | φ / y]˙ χ [˙ ι x | ψ / y]˙ χ

Proof

Step Hyp Ref Expression
1 iotabi x φ ψ ι x | φ = ι x | ψ
2 1 sbceq1d x φ ψ [˙ ι x | φ / y]˙ χ [˙ ι x | ψ / y]˙ χ