Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Principia Mathematica * 13 and * 14
iotasbcq
Next ⟩
Set Theory
Metamath Proof Explorer
Ascii
Unicode
Theorem
iotasbcq
Description:
Theorem *14.272 in
WhiteheadRussell
p. 193.
(Contributed by
Andrew Salmon
, 11-Jul-2011)
Ref
Expression
Assertion
iotasbcq
⊢
∀
x
φ
↔
ψ
→
[
˙
ι
x
|
φ
/
y
]
˙
χ
↔
[
˙
ι
x
|
ψ
/
y
]
˙
χ
Proof
Step
Hyp
Ref
Expression
1
iotabi
⊢
∀
x
φ
↔
ψ
→
ι
x
|
φ
=
ι
x
|
ψ
2
1
sbceq1d
⊢
∀
x
φ
↔
ψ
→
[
˙
ι
x
|
φ
/
y
]
˙
χ
↔
[
˙
ι
x
|
ψ
/
y
]
˙
χ