Metamath Proof Explorer


Theorem iotavalb

Description: Theorem *14.202 in WhiteheadRussell p. 189. A biconditional version of iotaval . (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotavalb ∃! x φ x φ x = y ι x | φ = y

Proof

Step Hyp Ref Expression
1 iotaval x φ x = y ι x | φ = y
2 iotasbc ∃! x φ [˙ ι x | φ / z]˙ z = y z x φ x = z z = y
3 iotaexeu ∃! x φ ι x | φ V
4 eqsbc1 ι x | φ V [˙ ι x | φ / z]˙ z = y ι x | φ = y
5 3 4 syl ∃! x φ [˙ ι x | φ / z]˙ z = y ι x | φ = y
6 2 5 bitr3d ∃! x φ z x φ x = z z = y ι x | φ = y
7 equequ2 z = y x = z x = y
8 7 bibi2d z = y φ x = z φ x = y
9 8 albidv z = y x φ x = z x φ x = y
10 9 biimpac x φ x = z z = y x φ x = y
11 10 exlimiv z x φ x = z z = y x φ x = y
12 6 11 syl6bir ∃! x φ ι x | φ = y x φ x = y
13 1 12 impbid2 ∃! x φ x φ x = y ι x | φ = y