Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Principia Mathematica * 13 and * 14
iotavalsb
Next ⟩
sbiota1
Metamath Proof Explorer
Ascii
Unicode
Theorem
iotavalsb
Description:
Theorem *14.242 in
WhiteheadRussell
p. 192.
(Contributed by
Andrew Salmon
, 11-Jul-2011)
Ref
Expression
Assertion
iotavalsb
⊢
∀
x
φ
↔
x
=
y
→
[
˙
y
/
z
]
˙
ψ
↔
[
˙
ι
x
|
φ
/
z
]
˙
ψ
Proof
Step
Hyp
Ref
Expression
1
19.8a
⊢
∀
x
φ
↔
x
=
y
→
∃
y
∀
x
φ
↔
x
=
y
2
eu6
⊢
∃!
x
φ
↔
∃
y
∀
x
φ
↔
x
=
y
3
iotavalb
⊢
∃!
x
φ
→
∀
x
φ
↔
x
=
y
↔
ι
x
|
φ
=
y
4
dfsbcq
⊢
y
=
ι
x
|
φ
→
[
˙
y
/
z
]
˙
ψ
↔
[
˙
ι
x
|
φ
/
z
]
˙
ψ
5
4
eqcoms
⊢
ι
x
|
φ
=
y
→
[
˙
y
/
z
]
˙
ψ
↔
[
˙
ι
x
|
φ
/
z
]
˙
ψ
6
3
5
syl6bi
⊢
∃!
x
φ
→
∀
x
φ
↔
x
=
y
→
[
˙
y
/
z
]
˙
ψ
↔
[
˙
ι
x
|
φ
/
z
]
˙
ψ
7
2
6
sylbir
⊢
∃
y
∀
x
φ
↔
x
=
y
→
∀
x
φ
↔
x
=
y
→
[
˙
y
/
z
]
˙
ψ
↔
[
˙
ι
x
|
φ
/
z
]
˙
ψ
8
1
7
mpcom
⊢
∀
x
φ
↔
x
=
y
→
[
˙
y
/
z
]
˙
ψ
↔
[
˙
ι
x
|
φ
/
z
]
˙
ψ