Metamath Proof Explorer


Theorem iotavalsb

Description: Theorem *14.242 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotavalsb x φ x = y [˙y / z]˙ ψ [˙ ι x | φ / z]˙ ψ

Proof

Step Hyp Ref Expression
1 19.8a x φ x = y y x φ x = y
2 eu6 ∃! x φ y x φ x = y
3 iotavalb ∃! x φ x φ x = y ι x | φ = y
4 dfsbcq y = ι x | φ [˙y / z]˙ ψ [˙ ι x | φ / z]˙ ψ
5 4 eqcoms ι x | φ = y [˙y / z]˙ ψ [˙ ι x | φ / z]˙ ψ
6 3 5 syl6bi ∃! x φ x φ x = y [˙y / z]˙ ψ [˙ ι x | φ / z]˙ ψ
7 2 6 sylbir y x φ x = y x φ x = y [˙y / z]˙ ψ [˙ ι x | φ / z]˙ ψ
8 1 7 mpcom x φ x = y [˙y / z]˙ ψ [˙ ι x | φ / z]˙ ψ